Triglyceride-glucose related indices as predictors for major adverse cardiovascular events and overall mortality in type-2 diabetes mellitus patients.

Mao-Jun Liu, Jun-Yu Pei, Cheng Zeng, Ying Xing, Yi-Feng Zhang, Pei-Qi Tang, Si-Min Deng, Xin-Qun Hu
Author Information
  1. Mao-Jun Liu: Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.
  2. Jun-Yu Pei: Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.
  3. Cheng Zeng: Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.
  4. Ying Xing: Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.
  5. Yi-Feng Zhang: Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.
  6. Pei-Qi Tang: Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.
  7. Si-Min Deng: Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.
  8. Xin-Qun Hu: Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China. huxinqun@csu.edu.cn.

Abstract

BACKGROUND: Recent studies have indicated that triglyceride glucose (TyG)-waist height ratio (WHtR) and TyG-waist circumference (TyG-WC) are effective indicators for evaluating insulin resistance. However, research on the association in TyG-WHtR, TyG-WC, and the risk and prognosis of major adverse cardiovascular events (MACEs) in type 2 diabetes mellitus (T2DM) cases are limited.
AIM: To clarify the relation in TyG-WHtR, TyG-WC, and the risk of MACEs and overall mortality in T2DM patients.
METHODS: Information for this investigation was obtained from Action to Control Cardiovascular Risk in Diabetes (ACCORD)/ACCORD Follow-On (ACCORDION) study database. The Cox regression model was applied to assess the relation among TyG-WHtR, TyG-WC and future MACEs risk and overall mortality in T2DM cases. The RCS analysis was utilized to explore the nonlinear correlation. Subgroup and interaction analyses were conducted to prove the robustness. The receiver operating characteristic curves were applied to analysis the additional predicting value of TyG-WHtR and TyG-WC.
RESULTS: After full adjustment for confounding variables, the highest baseline TyG-WHtR cohort respectively exhibited a 1.353-fold and 1.420-fold higher risk for MACEs and overall mortality, than the lowest quartile group. Similarly, the highest baseline TyG-WC cohort showed a 1.314-fold and 1.480-fold higher risk for MACEs and overall mortality, respectively. Each 1 SD increase in TyG-WHtR was significantly related to an 11.7% increase in MACEs and a 14.9% enhance in overall mortality. Each 1 SD increase in TyG-WC corresponded to an 11.5% in MACEs and a 16.6% increase in overall mortality. Including these two indexes in conventional models significantly improved the predictive power for MACEs and overall mortality.
CONCLUSION: TyG-WHtR and TyG-WC were promising predictors of MACEs and overall mortality risk in T2DM cases.

Keywords

References

  1. Cardiovasc Diabetol. 2024 Apr 24;23(1):134 [PMID: 38658993]
  2. J Am Heart Assoc. 2019 Feb 19;8(4):e011295 [PMID: 30776949]
  3. Nat Rev Nephrol. 2020 Jul;16(7):377-390 [PMID: 32398868]
  4. Cardiovasc Diabetol. 2024 Jan 6;23(1):8 [PMID: 38184598]
  5. Eur Heart J. 2023 Apr 1;44(13):1136-1153 [PMID: 36944496]
  6. Diabetes Metab Syndr. 2022 Aug;16(8):102581 [PMID: 35939943]
  7. Metabolism. 2021 Jun;119:154766 [PMID: 33766485]
  8. Circulation. 2020 Mar 3;141(9):e139-e596 [PMID: 31992061]
  9. Curr Vasc Pharmacol. 2019;17(2):153-163 [PMID: 29032755]
  10. Cardiovasc Diabetol. 2024 May 13;23(1):168 [PMID: 38741118]
  11. Lancet Diabetes Endocrinol. 2016 Jun;4(6):537-47 [PMID: 27156051]
  12. Postgrad Med J. 2021 May;97(1147):306-311 [PMID: 32371408]
  13. Lancet Healthy Longev. 2023 Jan;4(1):e23-e33 [PMID: 36521498]
  14. Cardiovasc Diabetol. 2023 Sep 16;22(1):254 [PMID: 37716947]
  15. N Engl J Med. 2011 Mar 3;364(9):818-28 [PMID: 21366473]
  16. Cancer Epidemiol Biomarkers Prev. 2017 Jan;26(1):13-16 [PMID: 28069727]
  17. J Int Med Res. 2023 Mar;51(3):3000605231164548 [PMID: 36994866]
  18. Curr Diabetes Rev. 2014 Jan;10(1):2-42 [PMID: 24524730]
  19. Am J Cardiol. 2007 Jun 18;99(12A):21i-33i [PMID: 17599422]
  20. Int J Mol Sci. 2022 Jan 12;23(2): [PMID: 35054972]
  21. Sci Rep. 2024 Jun 16;14(1):13884 [PMID: 38880806]
  22. Diabetes Metab J. 2022 Jan;46(1):15-37 [PMID: 34965646]
  23. Diabetes Metab Syndr. 2019 Mar - Apr;13(2):1449-1455 [PMID: 31336505]
  24. Cardiovasc Diabetol. 2024 Jan 6;23(1):15 [PMID: 38184591]
  25. Circulation. 2011 Nov 1;124(18):1996-2019 [PMID: 21947291]
  26. Diabetes Res Clin Pract. 2023 Oct;204:110945 [PMID: 37863776]
  27. Cardiovasc Diabetol. 2022 Jul 1;21(1):124 [PMID: 35778731]
  28. Diabetol Metab Syndr. 2024 May 17;16(1):102 [PMID: 38760860]
  29. BMJ Open. 2016 Mar 14;6(3):e010159 [PMID: 26975935]
  30. Curr Opin Clin Nutr Metab Care. 2018 Sep;21(5):360-365 [PMID: 29916924]
  31. Nutr Metab Cardiovasc Dis. 2022 Mar;32(3):596-604 [PMID: 35090800]
  32. Cardiovasc Diabetol. 2022 May 6;21(1):68 [PMID: 35524263]
  33. Metabolism. 2021 Jun;119:154770 [PMID: 33864798]
  34. Cardiovasc Diabetol. 2018 Jun 8;17(1):83 [PMID: 29884191]
  35. N Engl J Med. 2011 Nov 17;365(20):1876-85 [PMID: 22087679]
  36. Cardiovasc Diabetol. 2018 Aug 31;17(1):122 [PMID: 30170598]
  37. Cardiovasc Diabetol. 2024 Jan 6;23(1):16 [PMID: 38184577]
  38. Cardiovasc Diabetol. 2024 Jan 28;23(1):43 [PMID: 38281973]
  39. PLoS One. 2016 Mar 01;11(3):e0149731 [PMID: 26930652]
  40. Cardiovasc Diabetol. 2024 Jun 19;23(1):208 [PMID: 38898520]
  41. Nature. 2006 Dec 14;444(7121):840-6 [PMID: 17167471]
  42. Drug Discov Today. 2022 Mar;27(3):822-830 [PMID: 34767960]
  43. Lancet. 2005 Nov 5;366(9497):1640-9 [PMID: 16271645]
  44. Am J Physiol Endocrinol Metab. 2008 Jan;294(1):E15-26 [PMID: 17957034]
  45. Hormones (Athens). 2023 Jun;22(2):331-341 [PMID: 36972006]
  46. J Intern Med. 2023 Oct;294(4):531-535 [PMID: 37424183]
  47. Cardiovasc Diabetol. 2024 Jul 11;23(1):247 [PMID: 38992634]
  48. Obes Rev. 2016 Oct;17(10):989-1000 [PMID: 27405510]
  49. Lancet. 2021 Dec 19;396(10267):2019-2082 [PMID: 33189186]
  50. Front Endocrinol (Lausanne). 2024 Sep 06;15:1471535 [PMID: 39309107]
  51. J Am Coll Cardiol. 2022 Dec 20;80(25):2361-2371 [PMID: 36368511]
  52. Circ Res. 2020 May 22;126(11):1549-1564 [PMID: 32437299]
  53. Sci Rep. 2020 Oct 29;10(1):18575 [PMID: 33122731]

Word Cloud

Created with Highcharts 10.0.0mortalityMACEsoverallTyG-WCTyG-WHtRrisk1cardiovasculardiabetesT2DMincreaseadverseeventsmellituscasesrelatedmajor2relationpatientsActionappliedanalysishighestbaselinecohortrespectivelyhigherSDsignificantly11predictorsTriglyceride-glucoseindicesBACKGROUND:RecentstudiesindicatedtriglycerideglucoseTyG-waistheightratioWHtRTyG-waistcircumferenceeffectiveindicatorsevaluatinginsulinresistanceHoweverresearchassociationprognosistypelimitedAIM:clarifyMETHODS:InformationinvestigationobtainedControlCardiovascularRiskDiabetesACCORD/ACCORDFollow-OnACCORDIONstudydatabaseCoxregressionmodelassessamongfutureRCSutilizedexplorenonlinearcorrelationSubgroupinteractionanalysesconductedproverobustnessreceiveroperatingcharacteristiccurvesadditionalpredictingvalueRESULTS:fulladjustmentconfoundingvariablesexhibited353-fold420-foldlowestquartilegroupSimilarlyshowed314-fold480-fold7%149%enhancecorresponded5%166%IncludingtwoindexesconventionalmodelsimprovedpredictivepowerCONCLUSION:promisingtype-2controlMajorOverallType

Similar Articles

Cited By

No available data.