Cable Bacteria and Their Biotechnological Application.

Judith Stiefelmaier
Author Information
  1. Judith Stiefelmaier: Bioprocess Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany. judith.stiefelmaier@mv.rptu.de.

Abstract

Cable bacteria grow as multicellular filaments several centimetres deep into the sediment of freshwaters and oceans. Hereby, cable bacteria show unique characteristics such as electrogenic sulphur oxidation, extremely high conductivity and ability for CO fixation. This offers several possibilities of future applications in biotechnology with an outlook to sustainable processes. So far, research on cable bacteria is mostly concerning metabolism, electron transfer and effect on the surrounding sediment. Cultures are always performed on sediment from the natural habitat and in simple, small-scale reaction tubes, requiring further development for reproducible cultivation with scale-up capabilities. However, based on the known properties of cable bacteria, possible areas of application can already be derived. The use of cable bacteria in bioremediation is a promising approach, as the degradation of hydrocarbons has already been proven. Co-cultivation with plants could open up a further field of application, such as the described reduction of methane emissions from rice fields. Due to the extremely high conductivity of the filaments, cable bacteria are also very promising for incorporation into biodegradable microelectronics. By integrating electrodes into a suitable reactor system, bioelectrochemical processes could be implemented, either with the goal of electron uptake and product formation or for electricity generation.

Keywords

References

  1. Trojan D, Schreiber L, Bjerg JT, Bøggild A, Yang T, Kjeldsen KU, Schramm A (2016) A taxonomic framework for cable bacteria and proposal of the candidate genera Electrothrix and Electronema. Syst Appl Microbiol 39:297. https://doi.org/10.1016/j.syapm.2016.05.006 [DOI: 10.1016/j.syapm.2016.05.006]
  2. Risgaard-Petersen N, Kristiansen M, Frederiksen RB, Dittmer AL, Bjerg JT, Trojan D, Schreiber L, Damgaard LR, Schramm A, Nielsen LP (2015) Cable bacteria in freshwater sediments. Appl Environ Microbiol 81:6003. https://doi.org/10.1128/AEM.01064-15 [DOI: 10.1128/AEM.01064-15]
  3. Burdorf LDW, Tramper A, Seitaj D, Meire L, Hidalgo-Martinez S, Zetsche E-M, Boschker HTS, Meysman FJR (2017) Long-distance electron transport occurs globally in marine sediments. Biogeosciences 14:683. https://doi.org/10.5194/bg-14-683-2017 [DOI: 10.5194/bg-14-683-2017]
  4. Nielsen LP, Risgaard-Petersen N (2015) Rethinking sediment biogeochemistry after the discovery of electric currents. Annu Rev Mar Sci 7:425. https://doi.org/10.1146/annurev-marine-010814-015708 [DOI: 10.1146/annurev-marine-010814-015708]
  5. Meysman FJ (2018) Cable bacteria take a new breath using long-distance electricity. Trends Microbiol 26:411. https://doi.org/10.1016/j.tim.2017.10.011 [DOI: 10.1016/j.tim.2017.10.011]
  6. Pfeffer C, Larsen S, Song J, Dong M, Besenbacher F, Meyer RL, Kjeldsen KU, Schreiber L, Gorby YA, El-Naggar MY, Leung KM, Schramm A, Risgaard-Petersen N, Nielsen LP (2012) Filamentous bacteria transport electrons over centimetre distances. Nature 491:218. https://doi.org/10.1038/nature11586 [DOI: 10.1038/nature11586]
  7. Schauer R, Risgaard-Petersen N, Kjeldsen KU, Tataru Bjerg JJ, Jørgensen BB, Schramm A, Nielsen LP (2014) Succession of cable bacteria and electric currents in marine sediment. ISME J 8:1314. https://doi.org/10.1038/ismej.2013.239 [DOI: 10.1038/ismej.2013.239]
  8. Bjerg JT, Boschker HTS, Larsen S, Berry D, Schmid M, Millo D, Tataru P, Meysman FJR, Wagner M, Nielsen LP, Schramm A (2018) Long-distance electron transport in individual, living cable bacteria. Proc Natl Acad Sci USA 115:5786. https://doi.org/10.1073/pnas.1800367115 [DOI: 10.1073/pnas.1800367115]
  9. Scilipoti S, Koren K, Risgaard-Petersen N, Schramm A, Nielsen LP (2021) Oxygen consumption of individual cable bacteria. Sci Adv 7. https://doi.org/10.1126/sciadv.abe1870
  10. Geerlings NMJ, Karman C, Trashin S, As KS, Kienhuis MVM, Hidalgo-Martinez S, Vasquez-Cardenas D, Boschker HTS, de Wael K, Middelburg JJ, Polerecky L, Meysman FJR (2020) Division of labor and growth during electrical cooperation in multicellular cable bacteria. Proc Natl Acad Sci USA 117:5478. https://doi.org/10.1073/pnas.1916244117 [DOI: 10.1073/pnas.1916244117]
  11. Bjerg JT, Damgaard LR, Holm SA, Schramm A, Nielsen LP (2016) Motility of electric cable bacteria. Appl Environ Microbiol 82:3816. https://doi.org/10.1128/AEM.01038-16 [DOI: 10.1128/AEM.01038-16]
  12. Bjerg JJ, Lustermans JJM, Marshall IPG, Mueller AJ, Brokjær S, Thorup CA, Tataru P, Schmid M, Wagner M, Nielsen LP, Schramm A (2023) Cable bacteria with electric connection to oxygen attract flocks of diverse bacteria. Nat Commun 14:1614. https://doi.org/10.1038/s41467-023-37272-8 [DOI: 10.1038/s41467-023-37272-8]
  13. Lustermans JJM, Bjerg JJ, Burdorf LDW, Nielsen LP, Schramm A, Marshall IPG (2023) Persistent flocks of diverse motile bacteria in long-term incubations of electron-conducting cable bacteria, Candidatus Electronema aureum. Front Microbiol 14. https://doi.org/10.3389/fmicb.2023.1008293
  14. Dong M, Yang S, Yang X, Xu M, Hu W, Wang B, Huang Y, Xu J, Lu H, Yang Y, Chen X, Huang H, Sun G (2022) Water quality drives the distribution of freshwater cable bacteria. Sci Total Environ 841:156468. https://doi.org/10.1016/j.scitotenv.2022.156468 [DOI: 10.1016/j.scitotenv.2022.156468]
  15. Seitaj D, Schauer R, Sulu-Gambari F, Hidalgo-Martinez S, Malkin SY, Burdorf LDW, Slomp CP, Meysman FJR (2015) Cable bacteria generate a firewall against euxinia in seasonally hypoxic basins. Proc Natl Acad Sci USA 112:13278. https://doi.org/10.1073/pnas.1510152112 [DOI: 10.1073/pnas.1510152112]
  16. Middelburg JJ, Levin LA (2009) Coastal hypoxia and sediment biogeochemistry. Biogeosciences 6:1273. https://doi.org/10.5194/bg-6-1273-2009 [DOI: 10.5194/bg-6-1273-2009]
  17. van de Velde S, Lesven L, Burdorf LD, Hidalgo-Martinez S, Geelhoed JS, van Rijswijk P, Gao Y, Meysman FJ (2016) The impact of electrogenic sulfur oxidation on the biogeochemistry of coastal sediments: a field study. Geochim Cosmochim Acta. https://doi.org/10.1016/j.gca.2016.08.038
  18. Hermans M, Lenstra WK, Hidalgo-Martinez S, van Helmond NAGM, Witbaard R, Meysman FJR, Gonzalez S, Slomp CP (2019) Abundance and biogeochemical impact of cable bacteria in Baltic Sea sediments. Environ Sci Technol 53:7494. https://doi.org/10.1021/acs.est.9b01665 [DOI: 10.1021/acs.est.9b01665]
  19. Hermans M, Astudillo Pascual M, Behrends T, Lenstra WK, Conley DJ, Slomp CP (2021) Coupled dynamics of iron, manganese, and phosphorus in brackish coastal sediments populated by cable bacteria. Limnol Oceanogr 66:2611. https://doi.org/10.1002/lno.11776 [DOI: 10.1002/lno.11776]
  20. Kjeldsen KU, Schreiber L, Thorup CA, Boesen T, Bjerg JT, Yang T, Dueholm MS, Larsen S, Risgaard-Petersen N, Nierychlo M, Schmid M, Bøggild A, van de Vossenberg J, Geelhoed JS, Meysman FJR, Wagner M, Nielsen PH, Nielsen LP, Schramm A (2019) On the evolution and physiology of cable bacteria. Proc Natl Acad Sci USA 116:19116. https://doi.org/10.1073/pnas.1903514116 [DOI: 10.1073/pnas.1903514116]
  21. Meysman FJR, Cornelissen R, Trashin S, Bonné R, Martinez SH, van der Veen J, Blom CJ, Karman C, Hou J-L, Eachambadi RT, Geelhoed JS, de Wael K, Beaumont HJE, Cleuren B, Valcke R, van der Zant HSJ, Boschker HTS, Manca JV (2019) A highly conductive fibre network enables centimetre-scale electron transport in multicellular cable bacteria. Nat Commun 10:4120. https://doi.org/10.1038/s41467-019-12115-7 [DOI: 10.1038/s41467-019-12115-7]
  22. Cornelissen R, Bøggild A, Thiruvallur Eachambadi R, Koning RI, Kremer A, Hidalgo-Martinez S, Zetsche E-M, Damgaard LR, Bonné R, Drijkoningen J, Geelhoed JS, Boesen T, Boschker HTS, Valcke R, Nielsen LP, D’Haen J, Manca JV, Meysman FJR (2018) The cell envelope structure of cable bacteria. Front Microbiol 9. https://doi.org/10.3389/fmicb.2018.03044
  23. Malkin SY, Rao AMF, Seitaj D, Vasquez-Cardenas D, Zetsche E-M, Hidalgo-Martinez S, Boschker HTS, Meysman FJR (2014) Natural occurrence of microbial sulphur oxidation by long-range electron transport in the seafloor. ISME J 8:1843. https://doi.org/10.1038/ismej.2014.41 [DOI: 10.1038/ismej.2014.41]
  24. Jiang Z, Zhang S, Klausen LH, Song J, Li Q, Wang Z, Stokke BT, Huang Y, Besenbacher F, Nielsen LP, Dong M (2018) In vitro single-cell dissection revealing the interior structure of cable bacteria. Proc Natl Acad Sci USA 115:8517. https://doi.org/10.1073/pnas.1807562115 [DOI: 10.1073/pnas.1807562115]
  25. Thiruvallur Eachambadi R, Bonné R, Cornelissen R, Hidalgo-Martinez S, Vangronsveld J, Meysman FJR, Valcke R, Cleuren B, Manca JV (2020) An ordered and fail-safe electrical network in cable bacteria. Adv Biosyst 4:e2000006. https://doi.org/10.1002/adbi.202000006 [DOI: 10.1002/adbi.202000006]
  26. Boschker HTS, Cook PLM, Polerecky L, Eachambadi RT, Lozano H, Hidalgo-Martinez S, Khalenkow D, Spampinato V, Claes N, Kundu P, Wang D, Bals S, Sand KK, Cavezza F, Hauffman T, Bjerg JT, Skirtach AG, Kochan K, McKee M, Wood B, Bedolla D, Gianoncelli A, Geerlings NMJ, van Gerven N, Remaut H, Geelhoed JS, Millan-Solsona R, Fumagalli L, Nielsen LP, Franquet A, Manca JV, Gomila G, Meysman FJR (2021) Efficient long-range conduction in cable bacteria through nickel protein wires. Nat Commun 12. https://doi.org/10.1038/s41467-021-24312-4
  27. Digel L, Justesen ML, Bonné R, Fransaert N, Wouters K, Jensen PB, Plum-Jensen LE, Marshall IPG, Nicolas-Asselineau L, Drace T, Bøggild A, Hansen JL, Schramm A, Bøjesen ED, Nielsen LP, Manca JV, Boesen T (2023) Comparative electric and ultrastructural studies of cable bacteria reveal new components of conduction machinery. bioRxiv. https://doi.org/10.1101/2023.05.24.541955
  28. Polizzi NF, Skourtis SS, Beratan DN (2012) Physical constraints on charge transport through bacterial nanowires. Faraday Discuss 155:43. https://doi.org/10.1039/c1fd00098e [DOI: 10.1039/c1fd00098e]
  29. Lovley DR, Yao J (2021) Intrinsically conductive microbial nanowires for ‘Green’ electronics with novel functions. Trends Biotechnol 39:940. https://doi.org/10.1016/j.tibtech.2020.12.005 [DOI: 10.1016/j.tibtech.2020.12.005]
  30. Le T-H, Kim Y, Yoon H (2017) Electrical and electrochemical properties of conducting polymers. Polymers 9. https://doi.org/10.3390/polym9040150
  31. Vasquez-Cardenas D, van de Vossenberg J, Polerecky L, Malkin SY, Schauer R, Hidalgo-Martinez S, Confurius V, Middelburg JJ, Meysman FJR, Boschker HTS (2015) Microbial carbon metabolism associated with electrogenic sulphur oxidation in coastal sediments. ISME J 9:1966. https://doi.org/10.1038/ismej.2015.10 [DOI: 10.1038/ismej.2015.10]
  32. Ragsdale SW, Pierce E (2008) Acetogenesis and the Wood-Ljungdahl pathway of CO(2) fixation. Biochim Biophys Acta 1784:1873. https://doi.org/10.1016/j.bbapap.2008.08.012 [DOI: 10.1016/j.bbapap.2008.08.012]
  33. Huang Y, Hu W, Dong M, Yang Y, Yang X, Huang H, Yang S, Jia W, Wang B, Xu M (2023) Cable bacteria accelerate the anaerobic removal of pyrene in black odorous river sediments. J Hazard Mater 443:130305. https://doi.org/10.1016/j.jhazmat.2022.130305 [DOI: 10.1016/j.jhazmat.2022.130305]
  34. Vasquez-Cardenas D, Meysman FJR, Boschker HTS (2020) A cross-system comparison of dark carbon fixation in coastal sediments. Glob Biogeochem Cycles 34:e2019GB006298. https://doi.org/10.1029/2019GB006298 [DOI: 10.1029/2019GB006298]
  35. Malkin S, Cardini U (2021) Facilitative interactions on the rise: cable bacteria associate with diverse aquatic plants. New Phytol 232:1897. https://doi.org/10.1111/nph.17664 [DOI: 10.1111/nph.17664]
  36. Geerlings NMJ, Kienhuis MVM, Hidalgo-Martinez S, Hageman R, Vasquez-Cardenas D, Middelburg JJ, Meysman FJR, Polerecky L (2022) Polyphosphate dynamics in cable bacteria. Front Microbiol 13. https://doi.org/10.3389/fmicb.2022.883807
  37. Sulu-Gambari F, Seitaj D, Meysman FJR, Schauer R, Polerecky L, Slomp CP (2016) Cable bacteria control iron-phosphorus dynamics in sediments of a coastal hypoxic basin. Environ Sci Technol 50:1227. https://doi.org/10.1021/acs.est.5b04369 [DOI: 10.1021/acs.est.5b04369]
  38. Geerlings NMJ, Zetsche E-M, Hidalgo-Martinez S, Middelburg JJ, Meysman FJR (2019) Mineral formation induced by cable bacteria performing long-distance electron transport in marine sediments. Biogeosciences 16:811. https://doi.org/10.5194/bg-16-811-2019 [DOI: 10.5194/bg-16-811-2019]
  39. Sandfeld T, Marzocchi U, Petro C, Schramm A, Risgaard-Petersen N (2020) Electrogenic sulfide oxidation mediated by cable bacteria stimulates sulfate reduction in freshwater sediments. ISME J 14:1233. https://doi.org/10.1038/s41396-020-0607-5 [DOI: 10.1038/s41396-020-0607-5]
  40. Thiruvallur Eachambadi R, Boschker HTS, Franquet A, Spampinato V, Hidalgo-Martinez S, Valcke R, Meysman FJR, Manca JV (2021) Enhanced laterally resolved ToF-SIMS and AFM imaging of the electrically conductive structures in cable bacteria. Anal Chem 93:7226. https://doi.org/10.1021/acs.analchem.1c00298 [DOI: 10.1021/acs.analchem.1c00298]
  41. Martin BC, Bougoure J, Ryan MH, Bennett WW, Colmer TD, Joyce NK, Olsen YS, Kendrick GA (2019) Oxygen loss from seagrass roots coincides with colonisation of sulphide-oxidising cable bacteria and reduces sulphide stress. ISME J 13:707. https://doi.org/10.1038/s41396-018-0308-5 [DOI: 10.1038/s41396-018-0308-5]
  42. Thorup C, Petro C, Bøggild A, Ebsen TS, Brokjær S, Nielsen LP, Schramm A, Bjerg JJ (2021) How to grow your cable bacteria: establishment of a stable single-strain culture in sediment and proposal of Candidatus Electronema aureum GS. Syst Appl Microbiol 44:126236. https://doi.org/10.1016/j.syapm.2021.126236 [DOI: 10.1016/j.syapm.2021.126236]
  43. Li C, Reimers CE, Chace PJ (2022) Protocol for using autoclaved intertidal sediment as a medium to enrich marine cable bacteria. STAR Protoc 3:101604. https://doi.org/10.1016/j.xpro.2022.101604 [DOI: 10.1016/j.xpro.2022.101604]
  44. Dam A-S, Marshall IPG, Risgaard-Petersen N, Burdorf LDW, Marzocchi U (2021) Effect of salinity on cable bacteria species composition and diversity. Environ Microbiol 23:2605. https://doi.org/10.1111/1462-2920.15484 [DOI: 10.1111/1462-2920.15484]
  45. Sachs C, Kanaparthi D, Kublik S, Szalay AR, Schloter M, Damgaard LR, Schramm A, Lueders T (2022) Tracing long-distance electron transfer and cable bacteria in freshwater sediments by agar pillar gradient columns. FEMS Microbiol Ecol 98. https://doi.org/10.1093/femsec/fiac042
  46. Müller H, Bosch J, Griebler C, Damgaard LR, Nielsen LP, Lueders T, Meckenstock RU (2016) Long-distance electron transfer by cable bacteria in aquifer sediments. ISME J 10:2010. https://doi.org/10.1038/ismej.2015.250 [DOI: 10.1038/ismej.2015.250]
  47. Geerlings NMJ, Geelhoed JS, Vasquez-Cardenas D, Kienhuis MVM, Hidalgo-Martinez S, Boschker HTS, Middelburg JJ, Meysman FJR, Polerecky L (2021) Cell cycle, filament growth and synchronized cell division in multicellular cable bacteria. Front Microbiol 12. https://doi.org/10.3389/fmicb.2021.620807
  48. Liau P, Kim C, Saxton MA, Malkin SY (2022) Microbial succession in a marine sediment: inferring interspecific microbial interactions with marine cable bacteria. Environ Microbiol 24:6348. https://doi.org/10.1111/1462-2920.16230 [DOI: 10.1111/1462-2920.16230]
  49. Wang Z, Liu F, Li E, Yuan Y, Yang Y, Xu M, Qiu R (2022) Network analysis reveals microbe-mediated impacts of aeration on deep sediment layer microbial communities. Front Microbiol 13. https://doi.org/10.3389/fmicb.2022.931585
  50. Yin H, Aller RC, Zhu Q, Aller JY (2021) The dynamics of cable bacteria colonization in surface sediments: a 2D view. Sci Rep 11:7167. https://doi.org/10.1038/s41598-021-86365-1 [DOI: 10.1038/s41598-021-86365-1]
  51. Müller H, Marozava S, Probst AJ, Meckenstock RU (2020) Groundwater cable bacteria conserve energy by sulfur disproportionation. ISME J 14:623. https://doi.org/10.1038/s41396-019-0554-1 [DOI: 10.1038/s41396-019-0554-1]
  52. Marzocchi U, Palma E, Rossetti S, Aulenta F, Scoma A (2020) Parallel artificial and biological electric circuits power petroleum decontamination: the case of snorkel and cable bacteria. Water Res 173:115520. https://doi.org/10.1016/j.watres.2020.115520 [DOI: 10.1016/j.watres.2020.115520]
  53. Marzocchi U, Thorup C, Dam A-S, Schramm A, Risgaard-Petersen N (2022) Dissimilatory nitrate reduction by a freshwater cable bacterium. ISME J 16:50. https://doi.org/10.1038/s41396-021-01048-z [DOI: 10.1038/s41396-021-01048-z]
  54. Geelhoed JS, van de Velde SJ, Meysman FJR (2020) Quantification of cable bacteria in marine sediments via qPCR. Front Microbiol 11. https://doi.org/10.3389/fmicb.2020.01506
  55. Marzocchi U, Trojan D, Larsen S, Meyer RL, Revsbech NP, Schramm A, Nielsen LP, Risgaard-Petersen N (2014) Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment. ISME J 8:1682. https://doi.org/10.1038/ismej.2014.19 [DOI: 10.1038/ismej.2014.19]
  56. Nielsen LP, Risgaard-Petersen N, Fossing H, Christensen PB, Sayama M (2010) Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature 463:1071. https://doi.org/10.1038/nature08790 [DOI: 10.1038/nature08790]
  57. Risgaard-Petersen N, Revil A, Meister P, Nielsen LP (2012) Sulfur, iron-, and calcium cycling associated with natural electric currents running through marine sediment. Geochim Cosmochim Acta 92:1. https://doi.org/10.1016/j.gca.2012.05.036 [DOI: 10.1016/j.gca.2012.05.036]
  58. Meysman FJ, Risgaard-Petersen N, Malkin SY, Nielsen LP (2015) The geochemical fingerprint of microbial long-distance electron transport in the seafloor. Geochim Cosmochim Acta 152:122. https://doi.org/10.1016/j.gca.2014.12.014 [DOI: 10.1016/j.gca.2014.12.014]
  59. Yuan Y, Zhou L, Hou R, Wang Y, Zhou S (2020) Centimeter-long microbial electron transport for bioremediation applications. Trends Biotechnol 39:181. https://doi.org/10.1016/j.tibtech.2020.06.011 [DOI: 10.1016/j.tibtech.2020.06.011]
  60. Matturro B, Cruz Viggi C, Aulenta F, Rossetti S (2017) Cable bacteria and the bioelectrochemical snorkel: the natural and engineered facets playing a role in hydrocarbons degradation in marine sediments. Front Microbiol 8. https://doi.org/10.3389/fmicb.2017.00952
  61. Liu F, Wang Z, Wu B, Bjerg JT, Hu W, Guo X, Guo J, Nielsen LP, Qiu R, Xu M (2021) Cable bacteria extend the impacts of elevated dissolved oxygen into anoxic sediments. ISME J 15:1551. https://doi.org/10.1038/s41396-020-00869-8 [DOI: 10.1038/s41396-020-00869-8]
  62. Scholz VV, Meckenstock RU, Nielsen LP, Risgaard-Petersen N (2020) Cable bacteria reduce methane emissions from rice-vegetated soils. Nat Commun 11:1878. https://doi.org/10.1038/s41467-020-15812-w [DOI: 10.1038/s41467-020-15812-w]
  63. Scholz VV, Müller H, Koren K, Nielsen LP, Meckenstock RU (2019) The rhizosphere of aquatic plants is a habitat for cable bacteria. FEMS Microbiol Ecol 95. https://doi.org/10.1093/femsec/fiz062
  64. Bonné R, Wouters K, Lustermans JJM, Manca JV (2022) Biomaterials and electroactive bacteria for biodegradable electronics. Front Microbiol 13. https://doi.org/10.3389/fmicb.2022.906363
  65. Perkins DN, Brune Drisse M-N, Nxele T, Sly PD (2014) E-waste: a global hazard. Ann Glob Health. https://doi.org/10.1016/j.aogh.2014.10.001
  66. Groenendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds JR (2000) Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv Mater 12:481. https://doi.org/10.1002/(SICI)1521-4095(200004)12:7<481:AID-ADMA481>3.0.CO;2-C [DOI: 10.1002/(SICI)1521-4095(200004)12]
  67. Lampa-Pastirk S, Veazey JP, Walsh KA, Feliciano GT, Steidl RJ, Tessmer SH, Reguera G (2016) Thermally activated charge transport in microbial protein nanowires. Sci Rep 6. https://doi.org/10.1038/srep23517
  68. Bonné R, Hou J-L, Hustings J, Wouters K, Meert M, Hidalgo-Martinez S, Cornelissen R, Morini F, Thijs S, Vangronsveld J, Valcke R, Cleuren B, Meysman FJR, Manca JV (2020) Intrinsic electrical properties of cable bacteria reveal an Arrhenius temperature dependence. Sci Rep 10:19798. https://doi.org/10.1038/s41598-020-76671-5 [DOI: 10.1038/s41598-020-76671-5]
  69. Reimers CE, Li C, Graw MF, Schrader PS, Wolf M (2017) The identification of cable bacteria attached to the anode of a benthic microbial fuel cell: evidence of long distance extracellular electron transport to electrodes. Front Microbiol 8. https://doi.org/10.3389/fmicb.2017.02055
  70. Li C, Reimers CE, Alleau Y (2020) Inducing the attachment of cable bacteria on oxidizing electrodes. Biogeosciences 17:597. https://doi.org/10.5194/bg-17-597-2020 [DOI: 10.5194/bg-17-597-2020]
  71. Bonné R, Marshall IP, Bjerg J, Marzocchi U, Manca J, Nielsen LP, Aiyer K (2023) Electrically controlled interaction between cable bacteria and carbon electrodes. bioRxiv. https://doi.org/10.1101/2023.08.14.553267

Word Cloud

Created with Highcharts 10.0.0bacteriacableCablefilamentssedimentapplicationseveralextremelyhighconductivityprocesseselectrontransferalreadypromisingBiotechnologicalgrowmulticellularcentimetresdeepfreshwatersoceansHerebyshowuniquecharacteristicselectrogenicsulphuroxidationabilityCOfixationofferspossibilitiesfutureapplicationsbiotechnologyoutlooksustainablefarresearchmostlyconcerningmetabolismeffectsurroundingCulturesalwaysperformednaturalhabitatsimplesmall-scalereactiontubesrequiringdevelopmentreproduciblecultivationscale-upcapabilitiesHoweverbasedknownpropertiespossibleareascanderivedusebioremediationapproachdegradationhydrocarbonsprovenCo-cultivationplantsopenfielddescribedreductionmethaneemissionsricefieldsDuealsoincorporationbiodegradablemicroelectronicsintegratingelectrodessuitablereactorsystembioelectrochemicalimplementedeithergoaluptakeproductformationelectricitygenerationBacteriaApplicationConductiveElectronSediment

Similar Articles

Cited By

No available data.