Investigating the mechanisms of ethanol-induced disruption of COVID-19 lipid bilayers through molecular dynamics simulations.

Azadeh Kordzadeh, Ahmad Ramazani Sa
Author Information
  1. Azadeh Kordzadeh: Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran.
  2. Ahmad Ramazani Sa: Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran. ramazani@sharif.edu.

Abstract

CONTEXT: The COVID-19 pandemic, caused by the SARS-CoV-2 coronavirus, began in December 2019 in Wuhan, China. To mitigate the spread of COVID-19, public health officials strongly recommended preventive measures such as disinfectants, alcohol-based hand sanitizers, and face masks. The effect of ethanol on virus structure and inactivation remains unclear, and its molecular mechanism needs to be elucidated. This study elucidates how ethanol solutions interact with the lipid bilayer of the COVID-19 virus utilizing molecular dynamics (MD) simulations. Its findings indicated that ethanol can deactivate the virus through two primary mechanisms. First, when ethanol penetrates the viral membrane, it disrupts the structural integrity of the lipid bilayer, leading to membrane disruption. This alteration in morphology is critical as it compromises the virus's ability to maintain its structure and function.
METHODS: For the simulation, a lipid bilayer containing the spike protein of SARS-CoV-2 was constructed. The interaction between the viral membrane and ethanol solution was then simulated using GROMACS 5.1.4 for molecular dynamics (MD) analysis. Also, visual molecular dynamics (VMD1.9.3) was used for visualization. The study calculated the Lennard-Jones (LJ) and electrostatic interactions between ethanol and the lipid bilayer, and it analyzed the conformational changes in the spike protein following ethanol adsorption. Additionally, the effects of ethanol penetration on the morphology of the lipid bilayer were evaluated.

Keywords

References

  1. Bogoch II, Watts A, Thomas-Bachli A, Huber C, Kraemer MU, Khan K (2020) Pneumonia of unknown aetiology in Wuhan, China potential for international spread via commercial air travel. Journal of travel medicine. 27(2):taaa008. https://doi.org/10.1093/jtm/taaa008
  2. Helmy YA, Fawzy M, Elaswad A, Sobieh A, Kenney SP, Shehata AA (2020) The COVID-19 pandemic: a comprehensive review of taxonomy, genetics, epidemiology, diagnosis, treatment, and control. J Clin Med 9(4):1225. https://doi.org/10.3390/jcm9041225 [DOI: 10.3390/jcm9041225]
  3. Larsen MD, de Graaf EL, Sonneveld ME, Plomp HR, Nouta J, Hoepel W, Chen HJ, Linty F, Visser R, Brinkhaus M, ��u��ti�� T (2021) Afucosylated IgG characterizes enveloped viral responses and correlates with COVID-19 Severity. 371(6532):eabc8378. https://doi.org/10.1126/science.abc8378
  4. Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, Pan P, Wang W, Hu D, Liu X, Zhang Q (2020) Coronavirus infections and immune responses. J Med Virol 92(4):424���432. https://doi.org/10.1002/jmv.25685 [DOI: 10.1002/jmv.25685]
  5. Stadler K, Masignani V, Eickmann M, Becker S, Abrignani S, Klenk HD, Rappuoli R (2003) SARS���beginning to understand a new virus. Nat Rev Microbiol 1(3):209���218. https://doi.org/10.1038/nrmicro775 [DOI: 10.1038/nrmicro775]
  6. Ciotti M, Angeletti S, Minieri M, Giovannetti M, Benvenuto D, Pascarella S, Sagnelli C, Bianchi M, Bernardini S, Ciccozzi M (2020) COVID-19 outbreak: an overview. Chemotherapy 64(5���6):215���223. https://doi.org/10.1159/000507423 [DOI: 10.1159/000507423]
  7. Niranjan V, Setlur AS, Karunakaran C, Uttarkar A, Kumar KM, Skariyachan S (2022) Scope of repurposed drugs against the potential targets of the latest variants of SARS-CoV-2. Struct Chem 33(5):1585���1608. https://doi.org/10.1007/s11224-022-02045-4 [DOI: 10.1007/s11224-022-02045-4]
  8. Manandhar S, Pai KS, Krishnamurthy PT, Kiran AV, Kumari GK (2022) Identification of novel TMPRSS2 inhibitors against SARS-CoV-2 infection: a structure-based virtual screening and molecular dynamics study. Struct Chem 33(5):1529���1541. https://doi.org/10.1007/s11224-022-01921-3 [DOI: 10.1007/s11224-022-01921-3]
  9. Mohammed AO, Abo-Idrees MI, Makki AA, Ibraheem W, Alzain AA (2022) Drug repurposing against main protease and RNA-dependent RNA polymerase of SARS-CoV-2 using molecular docking, MM-GBSA calculations and molecular dynamics. Struct Chem 33(5):1553���1567. https://doi.org/10.1007/s11224-022-01999-9 [DOI: 10.1007/s11224-022-01999-9]
  10. Umar AK, Zothantluanga JH, Aswin K, Maulana S, Sulaiman Zubair M, Lalhlenmawia H, Rudrapal M, Chetia D (2022) Antiviral phytocompounds ���ellagic acid��� and ���(+)-sesamin��� of Bridelia retusa identified as potential inhibitors of SARS-CoV-2 3CL pro using extensive molecular docking, molecular dynamics simulation studies, binding free energy calculations, and bioactivity prediction. Struct Chem 33(5):1445���1465. https://doi.org/10.1007/s11224-022-01959-3 [DOI: 10.1007/s11224-022-01959-3]
  11. Dhingra N, Bhardwaj R, Bhardwaj U, Kapoor K (2023) Design of hACE2-based small peptide inhibitors against spike protein of SARS-CoV-2: a computational approach. Struct Chem 34(5):1843���1856. https://doi.org/10.1007/s11224-023-02125-z [DOI: 10.1007/s11224-023-02125-z]
  12. Parmar M, Thumar R, Patel B, Athar M, Jha PC, Patel D (2023) Structural differences in 3C-like protease (Mpro) from SARS-CoV and SARS-CoV-2: molecular insights revealed by molecular dynamics simulations. Struct Chem 34(4):1309���1326. https://doi.org/10.1007/s11224-022-02089-6 [DOI: 10.1007/s11224-022-02089-6]
  13. Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C, Duan Y (2020) Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 582(7811):289���293. https://doi.org/10.1038/s41586-020-2223-y [DOI: 10.1038/s41586-020-2223-y]
  14. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L, Wang X. (2020) Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 581(7807):215���20. https://doi.org/10.1038/s41586-020-2180-5
  15. Amin M, Abbas G (2020) Docking study of chloroquine and hydroxychloroquine interaction with SARS-CoV-2 spike glycoprotein���an in silico insight into the comparative efficacy of repurposing antiviral drugs. J Biomol Struct Dyn 1:1���1. https://doi.org/10.1080/07391102.2020.1775703 [DOI: 10.1080/07391102.2020.1775703]
  16. Dayer MR, Taleb-Gassabi S, Dayer MS (2017) Lopinavir a potent drug against coronavirus infection: insight from molecular docking study. Arch Clin Infect Dis 12(4):e13823. https://doi.org/10.5812/archcid.13823 [DOI: 10.5812/archcid.13823]
  17. Elfiky AA (2020) Ribavirin, remdesivir, sofosbuvir, galidesivir, and tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): a molecular docking study. Life Sci 253:117592. https://doi.org/10.1016/j.lfs.2020.117592 [DOI: 10.1016/j.lfs.2020.117592]
  18. Kordzadeh A, Saadatabadi AR, Hadi A (2020) Investigation on penetration of saffron components through lipid bilayer bound to spike protein of SARS-CoV-2 using steered molecular dynamics simulation. Heliyon 6(12):e05681. https://doi.org/10.1016/j.heliyon.2020.e05681 [DOI: 10.1016/j.heliyon.2020.e05681]
  19. Sethi A, Sanam S, Munagalasetty S, Jayanthi S, Alvala M (2020) Understanding the role of galectin inhibitors as potential candidates for SARS-CoV-2 spike protein: in silico studies. RSC Adv 10(50):29873���29884. https://doi.org/10.1039/D0RA04795C [DOI: 10.1039/D0RA04795C]
  20. Kampf G, Todt D, Pfaender S, Steinmann E (2020) Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect 104(3):246���251. https://doi.org/10.1016/j.jhin.2020.01.022 [DOI: 10.1016/j.jhin.2020.01.022]
  21. Kampf G (2018) Efficacy of ethanol against viruses in hand disinfection. J Hosp Infect 98(4):331���338. https://doi.org/10.1016/j.jhin.2017.08.025 [DOI: 10.1016/j.jhin.2017.08.025]
  22. Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR (2020) Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges. Int J Antimicrob Agents 55(3):105924. https://doi.org/10.1016/j.ijantimicag.2020.105924 [DOI: 10.1016/j.ijantimicag.2020.105924]
  23. Oxford JS, Lambkin R, Gibb I, Balasingam S, Chan C, Catchpole A (2005) A throat lozenge containing amyl meta cresol and dichlorobenzyl alcohol has a direct virucidal effect on respiratory syncytial virus, influenza A and SARS-CoV. Antiviral Chem Chemother 16(2):129���134. https://doi.org/10.1177/095632020501600205 [DOI: 10.1177/095632020501600205]
  24. World Health Organization. (2020) Recommendations to Member States to improve hand hygiene practices to help prevent the transmission of the COVID-19 virus: interim guidance, 1 April 2020. World Health Organization
  25. Ribeiro KD, Garcia LR, Dametto JF, Assun����o DG, Maciel BL (2020) COVID-19 and nutrition: the need for initiatives to promote healthy eating and prevent obesity in childhood. Child Obes 16(4):235���237. https://doi.org/10.1089/chi.2020.0121 [DOI: 10.1089/chi.2020.0121]
  26. Gurtovenko AA, Anwar J (2009) Interaction of ethanol with biological membranes: the formation of non-bilayer structures within the membrane interior and their significance. J Phys Chem B 113(7):1983���1992. https://doi.org/10.1021/jp808041z [DOI: 10.1021/jp808041z]
  27. Patra M, Salonen E, Terama E, Vattulainen I, Faller R, Lee BW, Holopainen J, Karttunen M (2006) Under the influence of alcohol: the effect of ethanol and methanol on lipid bilayers. Biophys J 90(4):1121���1135. https://doi.org/10.1529/biophysj.105.062364 [DOI: 10.1529/biophysj.105.062364]
  28. Ghorbani M, Wang E, Kr��mer A, Klauda JB. (2020) Molecular dynamics simulations of ethanol permeation through single and double-lipid bilayers. J Chem Phys. 153(12)5101. https://doi.org/10.1063/5.0013430
  29. Burley SK, Berman HM, Bhikadiya C, Bi C, Chen L, Di Costanzo L, Christie C, Dalenberg K, Duarte JM, Dutta S, Feng Z (2019) RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Res 47(D1):D464���D474. https://doi.org/10.1093/nar/gky1004 [DOI: 10.1093/nar/gky1004]
  30. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701���1718. https://doi.org/10.1002/jcc.20291 [DOI: 10.1002/jcc.20291]
  31. Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M, Mark AE, Van Gunsteren WF (2011) (2011) Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J 40:843���856. https://doi.org/10.1007/s00249-011-0700-9 [DOI: 10.1007/s00249-011-0700-9]
  32. Hess B, Bekker H, Berendsen HJ, Fraaije JG (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18(12):1463���1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12%3c1463::AID-JCC4%3e3.0.CO;2-H [DOI: 10.1002/(SICI)1096-987X(199709)18]
  33. Fuhrmans M, Sanders BP, Marrink SJ, de Vries AH (2009) Effects of bundling on the properties of the SPC water model. Theor Chem Acc 125:335. https://doi.org/10.1007/s00214-009-0590-4 [DOI: 10.1007/s00214-009-0590-4]
  34. Berger O, Edholm O, J��hnig F. (1997) Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J.72(5):2002���13. https://doi.org/10.1016/S0006-3495(97)78845-3
  35. Evans DJ, Holian BL (1985) The nose���hoover thermostat. J Chem Phys 83(8):4069���4074. https://doi.org/10.1063/1.449071 [DOI: 10.1063/1.449071]
  36. Lin Y, Pan D, Li J, Zhang L, Shao X. (2017) Application of Berendsen barostat in dissipative particle dynamics for nonequilibrium dynamic simulation. J Chem Physics. 146(12). https://doi.org/10.1063/1.4978807
  37. Van Gunsteren WF, Berendsen HJ (1988) A leap-frog algorithm for stochastic dynamics. Mol Simul 1(3):173���185. https://doi.org/10.1080/08927028808080941 [DOI: 10.1080/08927028808080941]
  38. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577���8593. https://doi.org/10.1063/1.470117 [DOI: 10.1063/1.470117]
  39. Gallagher N, Edwards FJ (2019) The diagnosis and management of toxic alcohol poisoning in the emergency department: a review article. Adv J Emerg Med 3(3):e28. https://doi.org/10.22114/ajem.v0i0.153 [DOI: 10.22114/ajem.v0i0.153]
  40. Khajeh A, Modarress H. (2014) Effect of cholesterol on behavior of 5-fluorouracil (5-FU) in a DMPC lipid bilayer, a molecular dynamics study. Biophys Chem.187:43���50. https://doi.org/10.1016/j.bpc.2014.01.004
  41. Khajeh A, Modarress H. (2014) The influence of cholesterol on interactions and dynamics of ibuprofen in a lipid bilayer. Biochim et Biophys Acta (BBA)-Biomembr. 1838(10):2431���8. https://doi.org/10.1016/j.bbamem.2014.05.029
  42. Nademi Y, Amjad Iranagh Se, Yousefpour A, Mousavi SZ, Modarress H. (2014) Molecular dynamics simulations and free energy profile of Paracetamol in DPPC and DMPC lipid bilayers. J Chem Sci.126:637-47. https://doi.org/10.1007/s12039-013-0556-x
  43. Yousefpour A, Amjad Iranagh S, Nademi Y, Modarress H (2013) Molecular dynamics simulation of nonsteroidal antiinflammatory drugs, naproxen and relafen, in a lipid bilayer membrane. Int J Quantum Chem 113(15):1919���1930. https://doi.org/10.1002/qua.24415 [DOI: 10.1002/qua.24415]
  44. Yousefpour A, Amjad-Iranagh S, Goharpey F, Modarress H (2018) Effect of drug amlodipine on the charged lipid bilayer cell membranes DMPS and DMPS+ DMPC: a molecular dynamics simulation study. Eur Biophys J 47:939���950. https://doi.org/10.1007/s00249-018-1317-z [DOI: 10.1007/s00249-018-1317-z]
  45. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33���38. https://doi.org/10.1016/0263-7855(96)00018-5 [DOI: 10.1016/0263-7855(96)00018-5]
  46. Isralewitz B, Gao M, Schulten K (2001) Steered molecular dynamics and mechanical functions of proteins. Curr Opin Struct Biol 11(2):224���230. https://doi.org/10.1016/S0959-440X(00)00194-9 [DOI: 10.1016/S0959-440X(00)00194-9]
  47. Allen WJ, Lemkul JA, Bevan DR. (2009) GridMAT���MD: a grid���based membrane analysis tool for use with molecular dynamics. J Comput Chem.30(12):1952���8. https://doi.org/10.1002/jcc.21172
  48. Eslami H, Das S, Zhou T, M��ller-Plathe F (2020) How alcoholic disinfectants affect coronavirus model membranes: membrane fluidity, permeability, and disintegration. J Phys Chem B 124(46):10374���10385. https://doi.org/10.1021/acs.jpcb.0c08296 [DOI: 10.1021/acs.jpcb.0c08296]
  49. Arjmand T (2022) Amelioration of COVID-19 Course using inhalation of dimethylsulfoxide (DMSO) and ethanol solution. Ann Clin Lab Res 10(08):1���4. https://doi.org/10.36648/2386-5180.22.10.428 [DOI: 10.36648/2386-5180.22.10.428]
  50. Zhou T, Wu Z, Das S, Eslami H, M��ller-Plathe F (2022) How ethanolic disinfectants disintegrate coronavirus model membranes: a dissipative particle dynamics simulation study. J Chem Theory Comput 18(4):2597���2615. https://doi.org/10.1021/acs.jctc.1c01120 [DOI: 10.1021/acs.jctc.1c01120]
  51. Das S, Meinel MK, Wu Z, M��ller-Plathe F (2021) The role of the envelope protein in the stability of a coronavirus model membrane against an ethanolic disinfectant. J Chem Phys 154(24):245101. https://doi.org/10.1063/5.0055331 [DOI: 10.1063/5.0055331]
  52. Celik U, Celik K, Celik S, Abayli H, Sahna KC, Tonbak ��, Toraman ZA, Oral A (2020) Interpretation of SARS-CoV-2 behaviour on different substrates and denaturation of virions using ethanol: an atomic force microscopy study. RSC Adv 10(72):44079���44086. https://doi.org/10.1039/D0RA09083B [DOI: 10.1039/D0RA09083B]
  53. Gangupomu VK, Capaldi FM (2011) (2011) Interactions of carbon nanotube with lipid bilayer membranes. J Nanomater 1:830436. https://doi.org/10.1155/2011/830436 [DOI: 10.1155/2011/830436]
  54. Vemparala S, Saiz L, Eckenhoff RG, Klein ML (2006) Partitioning of anesthetics into a lipid bilayer and their interaction with membrane-bound peptide bundles. Biophys J 91(8):2815���2825. https://doi.org/10.1529/biophysj.106.085324 [DOI: 10.1529/biophysj.106.085324]
  55. Wallace EJ, Sansom MS (2008) Blocking of carbon nanotube based nanoinjectors by lipids: a simulation study. Nano Lett 8(9):2751���2756. https://doi.org/10.1021/nl801217f [DOI: 10.1021/nl801217f]
  56. Suan Li M, Khanh Mai B. Steered molecular dynamics-a promising tool for drug design. Curr Bioinform. 7(4):342���51. https://doi.org/10.2174/157489312803901009

MeSH Term

Molecular Dynamics Simulation
Lipid Bilayers
Ethanol
SARS-CoV-2
Humans
COVID-19
Spike Glycoprotein, Coronavirus

Chemicals

Lipid Bilayers
Ethanol
Spike Glycoprotein, Coronavirus
spike protein, SARS-CoV-2

Word Cloud

Created with Highcharts 10.0.0ethanollipidmolecularbilayerdynamicsCOVID-19SARS-CoV-2virusmembraneproteinstructurestudyMDsimulationsmechanismsviraldisruptionmorphologyspikeCONTEXT:pandemiccausedcoronavirusbeganDecember2019WuhanChinamitigatespreadpublichealthofficialsstronglyrecommendedpreventivemeasuresdisinfectantsalcohol-basedhandsanitizersfacemaskseffectinactivationremainsunclearmechanismneedselucidatedelucidatessolutionsinteractutilizingfindingsindicatedcandeactivatetwoprimaryFirstpenetratesdisruptsstructuralintegrityleadingalterationcriticalcompromisesvirus'sabilitymaintainfunctionMETHODS:simulationcontainingconstructedinteractionsolutionsimulatedusingGROMACS514analysisAlsovisualVMD193usedvisualizationcalculatedLennard-JonesLJelectrostaticinteractionsanalyzedconformationalchangesfollowingadsorptionAdditionallyeffectspenetrationevaluatedInvestigatingethanol-inducedbilayersEthanolMolecularSpike

Similar Articles

Cited By

No available data.