Molecular dynamics method to predict the effects of temperature and strain rate on mechanical properties of Aluminum/Copper superalloy.

Mostafa Yazdani, Aazam Ghassemi, Mohamad Shahgholi, Javad Jafari Fesharaki, Seyed Ali Galehdari
Author Information
  1. Mostafa Yazdani: Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
  2. Aazam Ghassemi: Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran. a_ghassemi@iau.ac.ir.
  3. Mohamad Shahgholi: Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
  4. Javad Jafari Fesharaki: Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
  5. Seyed Ali Galehdari: Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.

Abstract

Metal alloys are engineered materials designed to enhance mechanical performance. Achieving optimal mechanical properties through alloy composition has been the focus of extensive research. This study employs the meshless molecular dynamics method to investigate the influence of temperature, strain rate, and copper content on the mechanical properties of Aluminum/Copper (Al-Cu) superalloy. The research focuses on the variation of copper content from 1 to 20%, temperature from 300 to 600 K, and strain rates between 0.001 ps and 0.01 ps, assessing their impact on the ultimate tensile strength (UTS) and elastic modulus of the alloy. The results show a significant enhancement in both UTS and elastic modulus with increasing copper content, with the UTS increasing by 359% and the elastic modulus by 281% when copper content rises from 1 to 20%. In contrast, increasing the temperature from 300 to 600 K results in a 31% reduction in UTS and an 18.9% decrease in elastic modulus, highlighting the sensitivity of these properties to thermal effects. Additionally, higher strain rates were found to improve both UTS and elastic modulus, with an 11.95% increase in UTS and an 8.34% increase in elastic modulus at the highest strain rate (0.01 ps). These findings demonstrate the critical role of alloy composition, temperature, and strain rate in tailoring the mechanical properties of Al-Cu alloys, providing insights for optimizing the material for high-performance applications.

Keywords

References

  1. Tang YT, Panwisawas C, Ghoussoub JN, Gong Y, Clark JW, Németh AA, Reed RC (2021) Alloys-by-design: Application to new superalloys for additive manufacturing. Acta Mater 202:417–436. https://doi.org/10.1016/j.actamat.2020.09.023 [DOI: 10.1016/j.actamat.2020.09.023]
  2. Qin Z, Wang Z, Wang Y, Zhang L, Li W, Liu J, Liu Y (2021) Phase prediction of Ni-base superalloys via high-throughput experiments and machine learning. Materials Research Letters 9(1):32–40. https://doi.org/10.1080/21663831.2020.1815093 [DOI: 10.1080/21663831.2020.1815093]
  3. Zhang Y, Xu X (2021) Lattice misfit predictions via the Gaussian process regression for Ni-based single crystal superalloys. Met Mater Int 27(2):235–253. https://doi.org/10.1007/s12540-020-00883-7 [DOI: 10.1007/s12540-020-00883-7]
  4. Strickland J, Nenchev B, Tassenberg K, Perry S, Sheppard G, Dong H, D’Souza N (2021) On the origin of mosaicity in directionally solidified Ni-base superalloys. Acta Mater 217:117180. https://doi.org/10.1016/j.actamat.2021.117180 [DOI: 10.1016/j.actamat.2021.117180]
  5. Makineni SK, Singh MP, Chattopadhyay K (2021) Low-density, high-temperature Co base superalloys. Annu Rev Mater Res 51. https://doi.org/10.1146/annurev-matsci-080619-014459
  6. Zhang J, Huang T, Cao K, Chen J, Zong H, Wang D, Liu L (2021) A correlative multidimensional study of γ′ precipitates with Ta addition in Re-containing Ni-based single crystal superalloys. J Mater Sci Technol 75:68–77. https://doi.org/10.1016/j.jmst.2020.10.025 [DOI: 10.1016/j.jmst.2020.10.025]
  7. Katnagallu S, Vernier S, Charpagne MA, Gault B, Bozzolo N, Kontis P (2021) Nucleation mechanism of hetero-epitaxial recrystallization in wrought nickel-based superalloys. Scripta Mater 191:7–11. https://doi.org/10.1016/j.scriptamat.2020.09.012 [DOI: 10.1016/j.scriptamat.2020.09.012]
  8. Gupta S, Bronkhorst CA (2021) Crystal plasticity model for single crystal Ni-based superalloys: Capturing orientation and temperature dependence of flow stress. Int J Plast 137:102896. https://doi.org/10.1016/j.ijplas.2020.102896 [DOI: 10.1016/j.ijplas.2020.102896]
  9. Yu Q, Wang C, Zhao Z, Dong C, Zhang Y (2021) New Ni-based superalloys designed for laser additive manufacturing. J Alloy Compd 861:157979. https://doi.org/10.1016/j.jallcom.2020.157979 [DOI: 10.1016/j.jallcom.2020.157979]
  10. Liu G, Du D, Wang K, Pu Z, Chang B (2021) Epitaxial growth behavior and stray grains formation mechanism during laser surface re-melting of directionally solidified nickel-based superalloys. J Alloy Compd 853:157325. https://doi.org/10.1016/j.jallcom.2020.157325 [DOI: 10.1016/j.jallcom.2020.157325]
  11. Wang Z, Lin X, Wang L, Cao Y, Zhou Y, Huang W (2021) Microstructure evolution and mechanical properties of the wire+ arc additive manufacturing Al-Cu alloy. Addit Manuf 47:102298. https://doi.org/10.1016/j.addma.2021.102298 [DOI: 10.1016/j.addma.2021.102298]
  12. Mair P, Kaserer L, Braun J, Weinberger N, Letofsky-Papst I, Leichtfried G (2021) Microstructure and mechanical properties of a TiB2-modified Al–Cu alloy processed by laser powder-bed fusion. Mater Sci Eng, A 799:140209. https://doi.org/10.1016/j.msea.2020.140209 [DOI: 10.1016/j.msea.2020.140209]
  13. Milligan B, Ma D, Allard L, Clarke A, Shyam A (2021) Crystallographic orientation-dependent strain hardening in a precipitation-strengthened Al-Cu alloy. Acta Mater 205:116577. https://doi.org/10.1016/j.actamat.2020.116577 [DOI: 10.1016/j.actamat.2020.116577]
  14. Zhang M, Wang J, Wang B, Xue C, Liu X (2022) Quantifying the effects of Sc and Ag on the microstructure and mechanical properties of Al–Cu alloys. Mater Sci Eng, A 831:142355. https://doi.org/10.1016/j.msea.2021.142355 [DOI: 10.1016/j.msea.2021.142355]
  15. Eskandari M, Yeganeh M, Motamedi M (2012) Investigation in the corrosion behaviour of bulk nanocrystalline 316L austenitic stainless steel in NaCl solution. Micro & Nano Letters 7(4):380–383. https://doi.org/10.1049/mnl.2012.0162 [DOI: 10.1049/mnl.2012.0162]
  16. Motamedi M, Eskandari M, Yeganeh M (2012) Effect of straight and wavy carbon nanotube on the reinforcement modulus in nonlinear elastic matrix nanocomposites. Mater Des 34:603–608. https://doi.org/10.1016/j.matdes.2011.05.013 [DOI: 10.1016/j.matdes.2011.05.013]
  17. Motamedi M, Safdari E, Nikzad M (2021) Effect of different parameters on the heat transfer coefficient of silicon and carbon nanotubes. Int Commun Heat Mass Transfer 129:105692. https://doi.org/10.1016/j.icheatmasstransfer.2021.105692 [DOI: 10.1016/j.icheatmasstransfer.2021.105692]
  18. Motamedi M, Mashhadi MM, Rastgoo A (2013) Vibration behavior and mechanical properties of carbon nanotube junction. J Comput Theor Nanosci 10(4):1033–1037. https://doi.org/10.1166/jctn.2013.2803 [DOI: 10.1166/jctn.2013.2803]
  19. Motamedi M, Mehrvar A, Nikzad M (2023) Statistical modelling and optimization of AL/CNT composite using response surface-desirability approach. Comput Part Mech :143–153. https://doi.org/10.1007/s40571-022-00484-8
  20. Motamedi M, Mehrvar A, Nikzad M (2022) Mechanical properties of aluminum/SiNT nanocomposite. Proc Inst Mech Eng C: J Mech Eng Sci :09544062221112798. https://doi.org/10.1177/09544062221112798
  21. Tiwary CS, Chakraborty S, Mahapatra DR, Chattopadhyay K (2014) Length-scale dependent mechanical properties of Al-Cu eutectic alloy: molecular dynamics based model and its experimental verification. J Appl Phys 115(20):203502. https://doi.org/10.1063/1.4879249 [DOI: 10.1063/1.4879249]
  22. Yanilkin AV, Krasnikov VS, Kuksin AY, Mayer AE (2014) Dynamics and kinetics of dislocations in Al and Al–Cu alloy under dynamic loading. Int J Plast 55:94–107. https://doi.org/10.1016/j.ijplas.2013.09.008 [DOI: 10.1016/j.ijplas.2013.09.008]
  23. Meng X, Zhou J, Huang S, Su C, Sheng J (2017) Properties of a laser shock wave in Al-Cu alloy under elevated temperatures: A molecular dynamics simulation study. Materials 10(1):73. https://doi.org/10.3390/ma10010073 [DOI: 10.3390/ma10010073]
  24. Trybula ME, Szafrański PW, Korzhavyi PA (2018) Structure and chemistry of liquid Al–Cu alloys: molecular dynamics study versus thermodynamics-based modelling. J Mater Sci 53(11):8285–8301. https://doi.org/10.1007/s10853-018-2116-8 [DOI: 10.1007/s10853-018-2116-8]
  25. Li C, Li D, Tao X, Chen H, Ouyang Y (2014) Molecular dynamics simulation of diffusion bonding of Al–Cu interface. Modell Simul Mater Sci Eng 22(6):065013. https://doi.org/10.1088/0965-0393/22/6/065013 [DOI: 10.1088/0965-0393/22/6/065013]
  26. Mojumder S (2018) Molecular dynamics study of plasticity in Al-Cu alloy nanopillar due to compressive loading. Physica B 530:86–89. https://doi.org/10.1016/j.physb.2017.10.119 [DOI: 10.1016/j.physb.2017.10.119]
  27. Li Z, Gao Y, Zhan S, Fang H, Zhang Z (2020) Molecular dynamics study on temperature and strain rate dependences of mechanical properties of single crystal Al under uniaxial loading. AIP Adv 10(7):075321. https://doi.org/10.1063/1.5086903 [DOI: 10.1063/1.5086903]
  28. Yu H, Jin Y, Hu L, Wang Y (2020) Mechanical properties of the solution treated and quenched Al–Cu–Li alloy (AA2195) sheet during high strain rate deformation at room temperature. Mater Sci Eng, A 793:139880. https://doi.org/10.1016/j.msea.2020.139880 [DOI: 10.1016/j.msea.2020.139880]
  29. Yazdani M, Ghassemi A, Shahgholi M, Fesharaki JJ, Galehdari SA (2025) Comparing mechanical properties of AL/Cu composite obtained by Mori-Tanaka and dynamic molecular methods. J Adv Mater Proc. Paper ID 202411061189702. Article in Press
  30. Xiao DH, Wang JN, Ding DY, Chen SP (2002) Effect of Cu content on the mechanical properties of an Al–Cu–Mg–Ag alloy. J Alloy Compd 343(1–2):77–81. https://doi.org/10.1016/S0925-8388(02)00076-2 [DOI: 10.1016/S0925-8388(02)00076-2]
  31. Zeren M (2005) Effect of copper and silicon content on mechanical properties in Al–Cu–Si–Mg alloys. J Mater Process Technol 169(2):292–298. https://doi.org/10.1016/j.jmatprotec.2005.03.009 [DOI: 10.1016/j.jmatprotec.2005.03.009]
  32. Gunst RF (1996). Response surface methodology: process and product optimization using designed experiments. https://doi.org/10.1080/00401706.1996.10484509 [DOI: 10.1080/00401706.1996.10484509]
  33. Nemeth MA (2003) Response surface methodology: Process and product optimization using designed experiments. J Qual Technol 35(4):428. https://doi.org/10.1080/00224065.2003.11980243 [DOI: 10.1080/00224065.2003.11980243]
  34. Jensen WA (2017) Response surface methodology: process and product optimization using designed experiments. J Qual Technol 49(2):186. https://doi.org/10.1080/00224065.2017.11917988 [DOI: 10.1080/00224065.2017.11917988]
  35. Derringer G, Suich R (1980) Simultaneous optimization of several response variables. J Qual Technol 12(4):214–219. https://doi.org/10.1080/00224065.1980.11980968 [DOI: 10.1080/00224065.1980.11980968]

Word Cloud

Created with Highcharts 10.0.0modulusstrainUTSelasticmechanicalpropertiestemperaturealloyratecoppercontentdynamicsmethodAl-Cu0psincreasingalloyscompositionresearchAluminum/Coppersuperalloy120%300600Krates01resultseffectsincreaseMolecularMetalengineeredmaterialsdesignedenhanceperformanceAchievingoptimalfocusextensivestudyemploysmeshlessmolecularinvestigateinfluencefocusesvariation001assessingimpactultimatetensilestrengthshowsignificantenhancement359%281%risescontrast31%reduction189%decreasehighlightingsensitivitythermalAdditionallyhigherfoundimprove1195%834%highestfindingsdemonstratecriticalroletailoringprovidinginsightsoptimizingmaterialhigh-performanceapplicationspredictElasticStress–straincurve

Similar Articles

Cited By