Advances in the modelling and simulation of high-energy density materials.

Hong-Wei Xi, S Prabu Dev, Kok Hwa Lim
Author Information
  1. Hong-Wei Xi: Singapore Institute of Technology, 10 Dover Drive, Singapore, 138683, Singapore. HongWei.Xi@singaporetech.edu.sg.
  2. S Prabu Dev: Singapore Institute of Technology, 10 Dover Drive, Singapore, 138683, Singapore.
  3. Kok Hwa Lim: Singapore Institute of Technology, 10 Dover Drive, Singapore, 138683, Singapore. KokHwa.Lim@singaporetech.edu.sg.

Abstract

CONTEXT: With the development of simulation technique and the rapid advances in computing power, modelling and simulation (M&S) began to demonstrate vast potential in predicting the properties of energetic material and helping to design potential energetic material. The prediction of energetic material density has evolved from evaluating molecular volume using Monte Carlo integration to the calculations of material density at the crystal scale: a technique, incorporating crystal packing and crystalline structure prediction through the first principles simulation, has demonstrated the ability to distinguish different polymorphs of energetic molecules and accurately predict their crystal structure and density. The atomization scheme together with high-level calculational models can predict most energetic materials with minimal reliance on reference systems and limits. In addition to its ability to predict detonation pressures and velocities of well-established classes of energetic materials based on the thermochemical code or empirical equations. M&S has proven effective in screening the potential of newly designed energetic materials. The application of M&S significantly enhances safety by reducing the number of hazardous experiments needed for material development. The ability to screen materials based on M&S predicted HOFs and detonation properties reduces experimental frequency, thereby decreasing both the risk of hazardous tests and overall development costs.
METHOD: Gaussian, VASP, and EXPLO5��� were utilized. The optimization and QM density predictions for energetic molecules were performed at the level of DFT B3LYP using Gaussian 16. While the determination of crystal structure and crystal density was performed using VASP 6. Subsequently, the heat of formation calculation was performed using Gaussian 16 at the G2 and CBS-Q level. EXPLO5��� code enabled the calculation of detonation velocity and detonation pressure.

Keywords

References

  1. Nair UR, Sivabalan R, Gore GM, Geetha M, Asthana SN, Singh H (2005) Hexanitrohexaazaisowurtzitane (CL-20) and CL-20-based formulations. Combust Explos Shock Waves 41:121���132. https://doi.org/10.1007/s10573-005-0014-2 [DOI: 10.1007/s10573-005-0014-2]
  2. Archibald TG, Gilardi RD, Baum K, George C (1990) Synthesis and x-ray crystal structure of 1,3,3-trinitroazetidine. J Org Chem 55:2920���2926. https://doi.org/10.1021/jo00296a066
  3. Zhang M-X, Eaton PE, Gilardi R (2000) Hepta- and octanitrocubanes. Angew Chem Int Ed 39:401���404 [DOI: 10.1002/(SICI)1521-3773(20000117)39]
  4. Bemm U, ��stmark H (1998) 1,1-Diamino-2,2-dinitroethylene: a novel energetic material with infinite layers in two dimensions. Acta Crystallogr C 54:1997���1999. https://doi.org/10.1107/S0108270198007987 [DOI: 10.1107/S0108270198007987]
  5. Tarver CM (1979) Density estimations for explosives and related compounds using the group additivity approach. J Chem Eng Data 24:136���145 [DOI: 10.1021/je60081a006]
  6. Wang GX, Shi CH, Gong XD, Xiao HM (2009) Theoretical investigation on structures, densities, detonation properties, and the pyrolysis mechanism of the derivatives of HNS. J Phys Chem A 113:1318���1326. https://doi.org/10.1021/jp804950z [DOI: 10.1021/jp804950z]
  7. Liu Y, Gong XD, Wang LJ, Wang GX, Xiao HM (2011) Substituent effects on the properties related to detonation performance and sensitivity for 2,2���,4,4���,6,6���-hexanitroazobenzene derivatives. J Phys Chem A 115:1754���1762. https://doi.org/10.1021/jp200512j [DOI: 10.1021/jp200512j]
  8. Rice BM, Hare JJ, Byrd EFC (2007) Accurate predictions of crystal densities using quantum mechanical molecular volumes. J Phys Chem A 111:10874���10879. https://doi.org/10.1021/jp073117j [DOI: 10.1021/jp073117j]
  9. Qiu L, Xiao H, Gong X, Ju X, Zhu W (2007) Crystal density predictions for nitramines based on quantum chemistry. J Hazard Mater 141:280���288. https://doi.org/10.1016/j.jhazmat.2006.06.1 [DOI: 10.1016/j.jhazmat.2006.06.1]
  10. Dobratz BM (1972) Properties of chemical explosives and explosive simulants. United States. Chapter4
  11. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labb�� A (2009) An electrostatic interaction correction for improved crystal density prediction. Mol Phys 107:2095���2101. https://doi.org/10.1080/00268970903156306 [DOI: 10.1080/00268970903156306]
  12. Politzer P, Martinez J, Murray JS, Concha MC (2010) An electrostatic correction for improved crystal density predictions of energetic ionic compounds. Mol Phys 108:1391���1396. https://doi.org/10.1080/00268971003702221 [DOI: 10.1080/00268971003702221]
  13. Xi HW, Goh HW, Xu JZC, Lee PPF, Lim KH (2017) Theoretical design and exploration of novel high energy density materials based on silicon. J Mol Model 25:291���301. https://doi.org/10.1080/07370652.2017.1399943 [DOI: 10.1080/07370652.2017.1399943]
  14. Xi HW, Mazian SZBM, Chan HYS, Hng HH, Goh HW, Lim KH (2019) Theoretical studies on the structures, material properties, and IR spectra of polymorphs of 3,4-bis(1H-5-tetrazolyl)furoxan. J Mol Model 25:51. https://doi.org/10.1007/s00894-019-3947-2 [DOI: 10.1007/s00894-019-3947-2]
  15. Koch W, Holthausen MC (2000) A chemist���s guide to density functional theory. Wiley-VCH, Weinheim
  16. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, Oxford
  17. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648���5652. https://doi.org/10.1063/1.464913
  18. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785���789. https://doi.org/10.1103/PhysRevB.37.785 [DOI: 10.1103/PhysRevB.37.785]
  19. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200���1211. https://doi.org/10.1139/p80-159 [DOI: 10.1139/p80-159]
  20. Wei T, Zhang JJ, Zhu WH, Zhang XW, Xiao HM (2010) DFT comparative studies on the structures and properties of heterocyclic nitramines. J Mol Struct THEOCHEM 956:55���60 [DOI: 10.1016/j.theochem.2010.06.027]
  21. Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) Gaussian-2 theory for molecular energies of first- and second-row compounds. J Chem Phys 94:7221���7230 [DOI: 10.1063/1.460205]
  22. Curtiss LA, Raghavachari K, Pople JA (1993) Gaussian-2 theory using reduced M��ller-Plesset orders. J Chem Phys 98:1293���1298. https://doi.org/10.1063/1.460205
  23. Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) Gaussian-3 (G3) theory for molecules containing first- and second-row atoms. J Chem Phys 109:7764���7776. https://doi.org/10.1063/1.477422 [DOI: 10.1063/1.477422]
  24. Ochterski JW, Petersson GA, Montgomery JA (1996) A complete basis set model chemistry. V. Extensions to six or more heavy atoms. J Chem Phys 104:2598���2618. https://doi.org/10.1063/1.470985 [DOI: 10.1063/1.470985]
  25. Montgomery JA Jr, Frisch MJ, Ochterski JW, Petersson GA (2000) A complete basis set model chemistry. VII. Use of the minimum population localization method. J Chem Phys 112:6532���6542. https://doi.org/10.1063/1.481224 [DOI: 10.1063/1.481224]
  26. Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (1999) A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J Chem Phys 110:2822���2827. https://doi.org/10.1063/1.477924 [DOI: 10.1063/1.477924]
  27. David RL (2003) Handbook of Chemistry and Physics, 84th edn. CRC Press, Boca Raton
  28. Dean JA (1999) LANGE���S Handbook of Chemistry, 15th edn. McGraw-Hill Book Co., New York
  29. Kamlet MJ, Jacobs SJ (1968) Chemistry of detonation. I. A simple method for calculating detonation properties of C, H, N, O explosives J Chem Phys 48:23���35. https://doi.org/10.1063/1.1667908 [DOI: 10.1063/1.1667908]
  30. Xiao JJ, Zhang J, Yang D, Xiao HM (2002) DFT comparative studies on the structures and properties of heterocyclic nitramines. Acta Chim Sin 60:2110���2114
  31. Dobratz BM (1981) LLNL explosives handbook. Properties of chemical explosives and explosive simulants. Lawrence Livermore National Laboratory. UCRL-52997 Chapter 6
  32. Su��eska M (2017) EXPLO5 6.04. OZM Research���. Czech

Word Cloud

Created with Highcharts 10.0.0energeticdensitymaterialsimulationcrystalmaterialsM&SusingdetonationdevelopmentpotentialstructureabilitypredictGaussianperformedtechniquemodellingpropertiespredictionmoleculesbasedcodehazardousVASPEXPLO5���level16formationcalculationCONTEXT:rapidadvancescomputingpowerbegandemonstratevastpredictinghelpingdesignevolvedevaluatingmolecularvolumeMonteCarlointegrationcalculationsscale:incorporatingpackingcrystallinefirstprinciplesdemonstrateddistinguishdifferentpolymorphsaccuratelyatomizationschemetogetherhigh-levelcalculationalmodelscanminimalreliancereferencesystemslimitsadditionpressuresvelocitieswell-establishedclassesthermochemicalempiricalequationsproveneffectivescreeningnewlydesignedapplicationsignificantlyenhancessafetyreducingnumberexperimentsneededscreenpredictedHOFsreducesexperimentalfrequencytherebydecreasingrisktestsoverallcostsMETHOD:utilizedoptimizationQMpredictionsDFTB3LYPdetermination6SubsequentlyheatG2CBS-QenabledvelocitypressureAdvanceshigh-energyCrystalDetonationpropertyEnergeticHeatModellingSafety

Similar Articles

Cited By

No available data.