Computational study of nitrogen-rich hexaazaadamantane cage compounds as potential energetic materials.

Anjali Sharma, Mridula Guin
Author Information
  1. Anjali Sharma: Department of Chemistry and Biochemistry, Sharda University, Greater Noida, 201310, India.
  2. Mridula Guin: Department of Chemistry and Biochemistry, Sharda University, Greater Noida, 201310, India. mridula.guin@sharda.ac.in.

Abstract

CONTEXT: Nitrogen-rich carbocyclic cage compounds serve as versatile platforms for the design and development of explosives with tailored properties. Their compact and rigid structure due to efficient packing leads to high crystal density. Moreover, their structural characteristics and amenability to functionalization make them indispensable in the quest for more powerful and efficient energetic materials. Adamantane derivatives are promising candidates for high-energy materials due to their unique molecular structure and the ability to introduce explosophoric groups onto their scaffold. In this computational study, we investigated the effects of substitution of six different explosophoric groups on the hexaazaadamantane skeleton. We explore the incorporation of - N(O)- NNO, - N(O)- NCN, - N, - ONO - NO, and - NH functionalities, renowned for their high-energy content and ability to enhance explosive properties. We predict the electronic structure, heat of formation, thermodynamic stability, impact sensitivity, and detonation performance of these azaadamantane derivatives. The results indicate that the nitrogen-rich adamantane-based cage structure, featuring - ONO functional groups along with - NH groups, exhibits excellent explosive properties and good impact sensitivity. Our computational approach enables the screening and design of novel energetic materials with superior explosive properties, offering insights into structural modifications that optimize energy release, sensitivity, and detonation characteristics.
METHODS: Density functional theory (DFT) using the Gaussian 16 software was used for all quantum chemical calculations. The optimization of the geometry of the designed compounds is performed at two different levels, e.g., B3LYP/6-311 + + G(d,p) and B3PW91/6-31G(d,p). Molecular surface and other properties are visualized using the Gaussview 6.0 software. The heat of formation (HOF) of the molecules is estimated using isodesmic reactions. The Multiwfn program was used for the calculation of molecular surface properties.

Keywords

References

  1. Talawar MB, Sivabalan R, Mukundan T, Muthurajan H, Sikder AK, Gandhe BR, Rao AS (2009) Environmentally compatible next generation green energetic materials (GEMs). J HazardMater 161:589–607. https://doi.org/10.1016/j.jhazmat.2008.04.011 [DOI: 10.1016/j.jhazmat.2008.04.011]
  2. Xu XJ, Xiao HM, Ju XH, Gong XD, Zhu WH (2006) Computational studies on polynitrohexaazaadmantanes as potential high energy density materials. JPhysChem A 110: 5929–5933 https://doi.org/10.1021/jp0575557
  3. Sikder AK, Sikder NA (2004) A review of advanced high-performance, insensitive, and thermally stable energetic materials emerging for military and space applications. J Hazard Mater 112:1–15 [DOI: 10.1016/j.jhazmat.2004.04.003]
  4. Guo YY, Chi WJ, Li ZS, Li QS (2015) Molecular design of N-NO2 substituted cycloalkanes derivatives Cm(N–NO2)m for energetic materials with high detonation performance and low impact sensitivity. RSC Adv 5:38048–38055. https://doi.org/10.1039/C5RA04509F [DOI: 10.1039/C5RA04509F]
  5. Li YF, Wang ZY, Ju XH, Fan XW (2009) Study of energetic compounds. J Mol Struc Theochem 907(1–3):29–34 [DOI: 10.1016/j.theochem.2009.04.012]
  6. Yin P, Zhang Q, Shreeve JNM (2016) Nitrogen-rich energetic salts with superior performance and low sensitivity. Acc Chem Res 49(1):4–16. https://doi.org/10.1021/acs.accounts.5b00477v [DOI: 10.1021/acs.accounts.5b00477v]
  7. Qu Y, Babailov SP (2018) Advances in highly energetic and thermally stable materials. J Mater Chem A 6(5):1915–1940 [DOI: 10.1039/C7TA09593G]
  8. Huang W, Tang Y, Imler GH, Parrish DA, Shreeve JNM (2020) High-energy density materials with tunable properties. J Am Chem Soc 142(7):3652–3657. https://doi.org/10.1021/jacs.0c00161 [DOI: 10.1021/jacs.0c00161]
  9. Song S, Chen F, Wang Y, Wang K, Yan M, Zhang Q (2021) Advances in fluorinated energetic materials. J Mater Chem A 9(38):21723–21731. https://doi.org/10.1039/D1TA04441A [DOI: 10.1039/D1TA04441A]
  10. Sharma A, Singh KD, Guin M (2023) Theoretical investigation of energetic materials based on imidazole framework featuring azido/nitro/nitrato/fluoro groups. J Phys Org Chem. https://doi.org/10.1002/poc.4661 [DOI: 10.1002/poc.4661]
  11. Hou T, Zhang J, Wang C, Luo J (2017) A facile method to construct a 2,4,9-triazaadamantane skeleton and synthesize nitramine derivatives. Org Chem Front 4(9):1819–1823. https://doi.org/10.1039/C7QO00357A [DOI: 10.1039/C7QO00357A]
  12. Hou T, Ruan H, Wang G, Luo J (2017) 2,4,4,8,8-pentanitro- 2-azaadamantane: a high density energetic compound. EurJ Org Chem 46:6957–6960 [DOI: 10.1002/ejoc.201701403]
  13. Zhang J, Hou T, Zhang L, Luo J (2018) 2, 4, 4,6,8,8- Hexanitro-2,6-diazaadamantane: a high-energy density compound with high stability. Org lett 20(22):7172–7176. https://doi.org/10.1021/acs.orglett.8b03107 [DOI: 10.1021/acs.orglett.8b03107]
  14. Zhou Q, Cai R, Li H, Liu Y, Li B, Hou T, Zhu L, Wang G, Zhang Y, Luo J (2023) Introduction of seven nitro groups on the 2-azaadamantane scaffold via a two-shell arrangement strategy. Org Chem Front 10:2551–2555. https://doi.org/10.1039/D3QO00384A [DOI: 10.1039/D3QO00384A]
  15. Pan Y, Zhu W (2017) Theoretical design on a series of novel bicyclic and cage nitramines as high energy density compounds. J Phys Chem A 121(47):9163–9171. https://doi.org/10.1021/acs.jpca.7b10462 [DOI: 10.1021/acs.jpca.7b10462]
  16. Pan Y, Zhu W, Xiao H (2019) Molecular design on a new family of azaoxaadamantane cage compounds as potential high-energy-density compounds. CanadJChem 97(2):86–93
  17. Xu XJ, Xiao HM, Ma XF, Ju XH (2006) Looking for high-energy-density compounds among hexaazaadamantane derivatives with -CN,-NC, and-ONO2 groups. Int j quant chem 106(7):1561–1568 [DOI: 10.1002/qua.20909]
  18. Wu Q, Zhu WH, Xiao HM (2014) Searching for a new family of insensitive high explosives by introducing N hybridization and N-oxides into a cage cubane. J Mol Model 20:2483. https://doi.org/10.1007/s00894-014-2483-2 [DOI: 10.1007/s00894-014-2483-2]
  19. Wang F, Du H, Zhang J, Gong X (2011) Computational studies on the crystal structure thermodynamic properties, detonation performance, and pyrolysis mechanism of 2,4,6,8-tetranitro-1,3,5,7-tetraazacubane as a novel high energy density material. J Phys Chem A 115(42):11788–11795. https://doi.org/10.1021/jp2049469 [DOI: 10.1021/jp2049469]
  20. Zhao GZ, Lu M (2013) Theoretical studies on the crystal structure, thermodynamic properties, detonation performance, and thermal stability of cage-tetranitrotetraazabicyclooctane as a novel high energy density compound. J Mol Model 19:57–64. https://doi.org/10.1007/s00894-012-1522-0 [DOI: 10.1007/s00894-012-1522-0]
  21. Lian P, Kang C, Zhang YX, Chen S, Lai WP (2021) Theoretical study on new high energetic density compounds with high power and specific impulse. Fuel Process Technol. https://doi.org/10.1016/j.fpc.2021.04.006 [DOI: 10.1016/j.fpc.2021.04.006]
  22. Richard RM, Ball DW (2008) B3LYP calculations on the thermodynamic properties of a series of nitroxycubanes having the formula CH(NO) (x=1–8). J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2008.09.078 [DOI: 10.1016/j.jhazmat.2008.09.078]
  23. Lin CP, Chang CP, Chou YC, Chu YC, Shu CM (2009) Modeling solid thermal explosion containment on reactor HNIW and HMX. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2009.11.064 [DOI: 10.1016/j.jhazmat.2009.11.064]
  24. Ghule V, Jadhav P, Patil R, Radhakrishnan S, Soman T (2010) Quantum-chemical studies on hexaazaisowurtzitanes. J Phys Chem A 114:498–503 [DOI: 10.1021/jp9071839]
  25. Wu Q, Zhu WH, Xiao HM (2014) Computer-aided design of two novel and super-high energy cage explosives: dodecanitrohexaprismane and hexanitrohexaazaprismane. RSC Adv 4(8):3789–3797. https://doi.org/10.1039/C3RA46625 [DOI: 10.1039/C3RA46625]
  26. Qiu L, Xiao HM, Gong XD, Ju XH, Zhu WH (2006) Theoretical investigations on energetic compounds. J PhysChemA 110:3797–3807. https://doi.org/10.1021/jp054169g [DOI: 10.1021/jp054169g]
  27. Richard RM, Ball DW (2008) Quantum-chemical studies on energetic materials. J MolStruct 858:85–87. https://doi.org/10.1016/j.theochem.2008.02.030 [DOI: 10.1016/j.theochem.2008.02.030]
  28. Zhang MX, Eaton PE, Gilardi R (2000) Hepta- and octanitrocubanes. Angew Chem Int Ed 39(2):394014 [DOI: 10.1002/(SICI)1521-3773(20000117)39]
  29. Nielson AT, Chafin AP, Christian SL, Moore DW, Nadler MP, Nissan RA, Vanderah DJ, Gilardi RD, George CFB, Flippen-Anderson JL (1998) Synthesis of polyaza polycyclic caged polynitramines. Tetrahedron 54(39):11793–11812. https://doi.org/10.1016/S0040-4020(98)83040-8 [DOI: 10.1016/S0040-4020(98)83040-8]
  30. Ling YF, Zhang PP, Sun L, Lai WP (2014) Efficient synthesis of 2, 2, 4, 4, 6, 6-hexanitroadamantane under mild conditions. Synthesis 46(16):2225–2233. https://doi.org/10.1055/s-0033-1341251 [DOI: 10.1055/s-0033-1341251]
  31. Ling Y, Ren X, Lai W, Luo J (2015) 4, 4, 8, 8-tetranitroadamantane-2, 6-diyl dinitrate: a high-density energetic material. Eur J Org Chem 7:1541–1547. https://doi.org/10.1002/ejoc.201403449 [DOI: 10.1002/ejoc.201403449]
  32. Wang Y, Li S, Li Y, Zhang R, Wang D, Pang S (2014)A comparative study of the structure, energetic performance, and stability of nitro-NNO-azoxy substituted explosives. J Mat. ChemA 2(48):20806–20813, https://doi.org/10.1039/C4TA04716H .
  33. Anikin OV, Leonov NE, Klenov MS, Churakov AM, Voronin AA, Guskov AA, Muravyev NV, Strelenko YA, Fedyanin IV, Tartakovsky VA (2019) An energetic (nitro-NNO-azoxy)triazolo-1,2,4- triazine. Eur J Org Chem 26:4189–4195. https://doi.org/10.1002/ejoc.201900314 [DOI: 10.1002/ejoc.201900314]
  34. Leonov NE, Klenov MS, Anikin OV, Churakov AM, StrelenkoYA VAA, Lempert DB, Muravyev NV, Fedyanin IV, Semenov SE, Tartakovsky VA (2020) Synthesis of new energetic materials based on furazan rings and nitro-NNO-azoxy groups. ChemistrySelect 5:12243–12249. https://doi.org/10.1002/slct.202003182 [DOI: 10.1002/slct.202003182]
  35. Leonov NE, Semenov SE, Klenov MS, Churakov AM, Strelenko YA, Pivkina YN, Fedyanin IV, Lempert DB, Kon’kova TS, Matyushin YN, Miroshnichenko EA, Tartakovsky VA (2021) Novel energetic aminofurazans with a nitro-NNO-azo group. Mendeleev Commun. 31:789–791. https://doi.org/10.1016/j.mencom.2021.11.006 [DOI: 10.1016/j.mencom.2021.11.006]
  36. Pepekin VI, Kostikova LM, Lebedev VP (2005) Proceedings of 36th International Annual Conference of ICT Karlsruhe Germany. 95
  37. Troitskaya-Markova NA, Vlasova OG, Godovikova TI, Zlotin SG, Rakitin OA (2017) Bis [1, 2, 5] oxadiazolo [3, 4-c: 3’, 4’-e] pyridazine 4, 5-dioxide as a synthetic equivalent of 4, 4’-dinitroso-3, 3’-bifuraza. Mendeleev Commun 27:448. https://doi.org/10.1016/j.mencom.2017.09.005 [DOI: 10.1016/j.mencom.2017.09.005]
  38. Leonov NE, Sidorov FM, Klenov MS, Churakov AM, Strelenko YA, Pivkina AN, Fedyanin IV, Lem- pert DB, Kon’kova TS, Matyushin YN, Tartakovsky VA (2021) Synthesis and properties of novel energetic (cyano-NNO-azoxy)furazan. Mendeleev Commun 31:792–794. https://doi.org/10.1016/j.mencom.2021.11.007 [DOI: 10.1016/j.mencom.2021.11.007]
  39. Klapötke TM, Krumm B (2010) In: Organic azides: azide-containing high energy materials. John Wiley Sons Ltd. 2 389–411. https://doi.org/10.1016/j.fpc.2021.09.003
  40. Pang F, Wang G, Lu T, Fan G, Chen FX (2018) Preparation and characteristics of 1,2,4-oxadiazole-derived energetic ionic salts with nitrogen linkages. New J Chem 42:4036–4044. https://doi.org/10.1039/C7NJ03548A [DOI: 10.1039/C7NJ03548A]
  41. Smirnov GA, Gordeev PB, Nikitin SV, Pokhvisneva GV, Ternikova TV, Chistokhvalov IM, Luk’yanov OA (2018) N-(2-azidoethyl) derivatives of methylene bis(1-oxytriaz-1-ene 2-oxides). Russ Chem Bull 67:2010–2015. https://doi.org/10.1007/s11172-018-2322-1 [DOI: 10.1007/s11172-018-2322-1]
  42. Ghule VD, Sarangapani R, Jadhav PM, Pande RK (2011) Computational design and structure-property relationship studies on heptazines. J Mol Model 17:2927. https://doi.org/10.1007/s00894-011-0959-x [DOI: 10.1007/s00894-011-0959-x]
  43. Zhou J, Zhang J, Wang B, Qiu L, Xu R, Sheremetev AB (2022) Recent synthetic efforts towards high energy density materials: how to design high-performance energetic structures. Fire Phys Chem 2(2):83–139. https://doi.org/10.1016/j.fpc.2021.09.005 [DOI: 10.1016/j.fpc.2021.09.005]
  44. Liu JP (2019) Nitrate esters chemistry and technology. Springer Nature Singapore Pte Ltd. 684 https://doi.org/10.1007/978-981-13-6647-5
  45. Politzer P, Murray JS (2016) High performance, low sensitivity: conflicting or compatible? Propellants Explos. Pyrotech 41:414–425. https://doi.org/10.1002/prep.201500349 [DOI: 10.1002/prep.201500349]
  46. Yang J, Yan H, Wang G, Zhang X, Wang T, Gong X (2014) Computational investigations into the substituent effects of –N3, –NF2, –NO2, and –NH2 on the structure, sensitivity and detonation properties of N, N′-azobis(1, 2, 4-triazole). J Mol Model 20:2148. https://doi.org/10.1007/s00894-014-2148-1 [DOI: 10.1007/s00894-014-2148-1]
  47. Gaussian 16, Revision C, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Jr. Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ Gaussian Inc, Wallingford CT, 2016
  48. Wang F, Wang GX, Du HC, Zhang JY, Gong XD (2011) Theoretical studies on the heats of formation, detonation properties, and pyrolysis mechanisms of energetic cyclic nitramines. J Phys Chem A 115:13858–13864. https://doi.org/10.1021/jp2047536 [DOI: 10.1021/jp2047536]
  49. Pan Y, Li JS, Cheng BB, Zhu WH, Xiao HM (2012) Computational studies on the heats of formation, energetic properties and thermal stability of energetic nitrogen-rich furazano[3,4-b]pyrazine-based derivatives. Comput Theor Chem 992:110–119. https://doi.org/10.1016/j.comptc.2012.05.013 [DOI: 10.1016/j.comptc.2012.05.013]
  50. Li M, Xu H, Wu F (2014) Computational studies on the energetic properties of polynitroxanthines. J Mol Model 20(4):2204 [DOI: 10.1007/s00894-014-2204-x]
  51. Politzer P, Ma Y, Lane P, Concha MC (2005) Computational prediction of standard gas liquid and solid-phase heats of formation and heats of vaporization and sublimation. Int J Quant Chem 105:341–347. https://doi.org/10.1002/qua.20709 [DOI: 10.1002/qua.20709]
  52. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbe A (2009) An electrostatic interaction correction for improved crystal density prediction. MolPhys 107:2095. https://doi.org/10.1080/00268970903156306 [DOI: 10.1080/00268970903156306]
  53. Byrd EFC, Rice BM (2006) Improved prediction of heats of formation of energetic materials using quantum mechanical calculations. J Phys Chem A 110:1005. https://doi.org/10.1021/jp0536192 [DOI: 10.1021/jp0536192]
  54. Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16:1679–1691. https://doi.org/10.1007/s00894-010-0692-x [DOI: 10.1007/s00894-010-0692-x]
  55. Kamlet MJ, Ablard JE (1968) Chemistry of detonations II. Buffered Equilibria J ChemPhys 48:36–42. https://doi.org/10.1063/1.1667930 [DOI: 10.1063/1.1667930]
  56. Kamlet MJ, Jacobs SJ (1968) Chemistry of detonations. I. A simple method for calculating detonation properties of C-H–N–O explosives. J ChemPhy 48:23–35. https://doi.org/10.1063/1.1667908 [DOI: 10.1063/1.1667908]
  57. Keshavarz MH, Seif F, Soury H (2014) Prediction of the brisance of energetic materials. Propellants ExplosPyrotech 39:284–288. https://doi.org/10.1002/prep.201300047 [DOI: 10.1002/prep.201300047]
  58. Kamlet MJ, Finger M (1979) An alternative method for calculating gurney velocities. Combust Flame 34:213–214 [DOI: 10.1016/0010-2180(79)90095-6]
  59. Pospišil M, Vavra P, Concha MC, Murray JS, Politzer P (2010) A possible crystal volume factor in the impact sensitivities of some energetic compounds. J Mol Model 16:895. https://doi.org/10.1007/s00894-009-0587-x [DOI: 10.1007/s00894-009-0587-x]
  60. Storm CB, Stine JR, Kramer F (1990) In Chemistry and physics of energetic materials (ed. S.N. Bulusu). Kluwer Academic Publishers, Dordrecht The Netherlands 605–639
  61. Lu T, Chen F (2012) Multiwfn: a multifunctional wave function analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885 [DOI: 10.1002/jcc.22885]
  62. Tang L, Zhu W (2020) Molecular design property prediction, and intermolecular interactions for high-energy cage compounds based on the skeletons of RDX and HMX. J Chin Chem Soc 2020:1–12. https://doi.org/10.1002/jccs.202000405 [DOI: 10.1002/jccs.202000405]
  63. Rice BM, Hare JJ (2002) A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules. J Phys Chem A 106:1770–1783 [DOI: 10.1021/jp012602q]
  64. Aghabozorgi F, Hamadanian M (2014) Theoretical investigation of the heat of formation and detonation performance on 1,1,3,5,5-pentanitro-1,5-bis(difluoramino)-3-azapentane substituted. J Struc Chem 55(5):831–836. https://doi.org/10.1134/S0022476614050059 [DOI: 10.1134/S0022476614050059]
  65. Rogers DW, McLafferty FJ (1995) G2 ab initio calculations of the enthalpy of formation of hydrazoic acid, methyl azide, ethyl azide, methyl amine, and ethyl amine. J Chem Phys 103(18):8302–8303 [DOI: 10.1063/1.470712]
  66. David RL (2003–2004) Handbook of chemistry and physics 84th ed. CRC Press Boca Raton FL
  67. Lang Q, Sun Q, Xu Y, Wang P, Lin Q, Lu M (2021) From mono-rings to bridged bi-rings to caged bi-rings: a promising design strategy for all-nitrogen high-energy-density materials N10 and N12. New J Chem 45(14):6379–6385 [DOI: 10.1039/D1NJ00522G]

Word Cloud

Created with Highcharts 10.0.0propertiescompoundsstructurematerialsgroupscageenergeticexplosiveformationsensitivityusingdesigndueefficientstructuralcharacteristicsAdamantanederivativeshigh-energymolecularabilityexplosophoriccomputationalstudydifferenthexaazaadamantaneO - Nheatimpactdetonationnitrogen-richfunctionalsoftwareuseddpsurfaceCONTEXT:Nitrogen-richcarbocyclicserveversatileplatformsdevelopmentexplosivestailoredcompactrigidpackingleadshighcrystaldensityMoreoveramenabilityfunctionalizationmakeindispensablequestpowerfulpromisingcandidatesuniqueintroduceontoscaffoldinvestigatedeffectssubstitutionsixskeletonexploreincorporationof - N- NNO- NCN - ONO - NOand - NHfunctionalitiesrenownedcontentenhancepredictelectronicthermodynamicstabilityperformanceazaadamantaneresultsindicateadamantane-basedfeaturing - ONOalongwith - NHexhibitsexcellentgoodapproachenablesscreeningnovelsuperiorofferinginsightsmodificationsoptimizeenergyreleaseMETHODS:DensitytheoryDFTGaussian16quantumchemicalcalculationsoptimizationgeometrydesignedperformedtwolevelsegB3LYP/6-311 + + GB3PW91/6-31GMolecularvisualizedGaussview60HOFmoleculesestimatedisodesmicreactionsMultiwfnprogramcalculationComputationalpotentialCageDetonationpropertyExplosophoricgroupHeatHigh-energymaterial

Similar Articles

Cited By