Impact of age on cardiometabolic health in children at adiposity rebound: the role of genetic mechanisms.

Ling Luo, Fang-Biao Tao
Author Information
  1. Ling Luo: Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China.
  2. Fang-Biao Tao: Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China. taofangbiao@126.com. ORCID

Abstract

BACKGROUND: Identifying effective predictors early in life is crucial to enable timely prevention and intervention to improve cardiometabolic health outcomes. Adiposity rebound (AR) is an important period in early life, with earlier AR increasing the risk of cardiometabolic abnormalities. However, the role and mechanism of genetic factors in this association are unclear. Therefore, this study reviews the potential genetic mechanisms influencing the age at AR, as well as the genetic mechanisms linking earlier AR with cardiometabolic abnormalities.
DATA SOURCES: A comprehensive literature search was conducted in PubMed and China National Knowledge Infrastructure databases using a combination of medical subject headings terms and related keywords, including "adiposity rebound", "cardiometabolic", "obesity", "BMI trajectory", "diabetes mellitus", "dyslipidemias", "hypertension", "metabolic syndrome", "genetics", and "epigenetic". Citation tracking was performed as a supplementary search strategy. All potentially relevant articles were subsequently subjected to full-text evaluation for eligibility assessment.
RESULTS: Polymorphisms in the DMRT1, FTO, LEPR, and TFAP2B genes, along with obesity susceptibility, can influence the age at AR. Single-nucleotide polymorphisms associated with the age at AR are enriched in the insulin-like growth factor 1 (IGF-1) signaling pathway, which can be modulated by the LEPR and TFAP2B genes. Shared genetic mechanisms between cardiometabolic abnormalities and the age at AR are influenced by obesity-related genetic variants. These variants regulate the growth hormone (GH)/IGF-1 axis, advancing AR and leading to cardiometabolic abnormalities. Earlier AR alters adiponectin and leptin levels, further activating the GH/IGF-1 axis and creating a vicious cycle. Long-term breastfeeding can counteract the adverse effects of obesity-related genetic susceptibility on AR timing, thereby reducing the genetic risk of cardiometabolic abnormalities.
CONCLUSIONS: Our results support earlier AR as a marker for identifying cardiometabolic risk and screening high-risk populations at the genetic level.

Keywords

References

  1. Shi J, Fang H, Guo Q, Yu D, Ju L, Cheng X, et al. Association of dietary patterns with metabolic syndrome in Chinese children and adolescents aged 7���17: the China National Nutrition and Health Surveillance of Children and Lactating Mothers in 2016���2017. Nutrients. 2022;14:3524. [PMID: 36079782]
  2. Shi J, He L, Yu D, Ju L, Guo Q, Piao W, et al. Prevalence and correlates of metabolic syndrome and its components in Chinese children and adolescents aged 7���17: the China National Nutrition and Health Survey of Children and Lactating Mothers from 2016���2017. Nutrients. 2022;14:3348. [PMID: 36014854]
  3. Tanisawa K, Ito T, Kawakami R, Usui C, Kawamura T, Suzuki K, et al. Association between dietary patterns and different metabolic phenotypes in Japanese adults: WASEDA���S health study. Front Nutr. 2022;9:779967. [PMID: 35155537]
  4. Pussinen PJ, Paju S, Koponen J, Viikari JSA, Taittonen L, Laitinen T, et al. Association of childhood oral infections with cardiovascular risk factors and subclinical atherosclerosis in adulthood. JAMA Netw Open. 2019;2:e192523. [PMID: 31026022]
  5. Rolland-Cachera MF, Deheeger M, Bellisle F, Sempe M, Guilloud-Bataille M, Patois E. Adiposity rebound in children: a simple indicator for predicting obesity. Am J Clin Nutr. 1984;39:129���35. [PMID: 6691287]
  6. Pomi AL, Pepe G, Aversa T, Corica D, Valenzise M, Messina MF, et al. Early adiposity rebound: predictors and outcomes. Ital J Pediatr. 2024;50:98. [PMID: 38750561]
  7. Clark KC, Kwitek AE. Multi-omic approaches to identify genetic factors in metabolic syndrome. Compr Physiol. 2021;12:3045���84. [PMID: 34964118]
  8. Fonseca MJ, Moreira C, Santos AC. Adiposity rebound and cardiometabolic health in childhood: results from the Generation XXI birth cohort. Int J Epidemiol. 2021;50:1260���71. [PMID: 33523213]
  9. Gonz��lez L, Corval��n C, Pereira A, Kain J, Garmendia ML, Uauy R. Early adiposity rebound is associated with metabolic risk in 7-year-old children. Int J Obes (Lond). 2014;38:1299���304. [PMID: 24909827]
  10. Koyama S, Ichikawa G, Kojima M, Shimura N, Sairenchi T, Arisaka O. Adiposity rebound and the development of metabolic syndrome. Pediatrics. 2014;133:e114���9. [PMID: 24366997]
  11. P��neau S, Gonz��lez-Carrascosa R, Gusto G, Goxe D, Lantieri O, Fezeu L, et al. Age at adiposity rebound: determinants and association with nutritional status and the metabolic syndrome at adulthood. Int J Obes (Lond). 2016;40:1150���6. [PMID: 27113489]
  12. Cao H, Yan SQ, Xie LL, Cai ZL, Gao GP, Yin XG, et al. Early adiposity rebound is associated with indices of obesity and metabolic risk in 5-year-old children: a birth cohort study in Ma���anshan. J Pub Health Prev Med. 2020;31:38���43 (in Chinese).
  13. Li XZ, Fan SQ, Li CG, Yan SQ, Tao FB. Study of the association between adiposity rebound and metabolic abnormalities in preschool children. Acta Universitatis Medicinalis Anhui. 2022;57:1812���5 (in Chinese).
  14. Vicu��a L, Barrientos E, Norambuena T, Alvares D, Gana JC, Leiva-Yamaguchi V, et al. New insights from GWAS on BMI-related growth traits in a longitudinal cohort of admixed children with Native American and European ancestry. iScience. 2023;26:106091. [PMID: 36844456]
  15. Zhou J, Zhang F, Qin X, Li P, Teng Y, Zhang S, et al. Age at adiposity rebound and the relevance for obesity: a systematic review and meta-analysis. Int J Obes (Lond). 2022;46:1413���24. [PMID: 35437004]
  16. Cao H, Yan SQ, Tao FB. Early adiposity rebound: prevalence and the effect on metabolic risk in children. Chin J Prev Med. 2017;51:861���4 (in Chinese).
  17. Erichsen HC, Chanock SJ. SNPs in cancer research and treatment. Br J Cancer. 2004;90:747���51. [PMID: 14970847]
  18. Gershoni M, Pietrokovski S. The landscape of sex-differential transcriptome and its consequent selection in human adults. BMC Biol. 2017;15:7. [PMID: 28173793]
  19. Oliva M, Mu��oz-Aguirre M, Kim-Hellmuth S, Wucher V, Gewirtz ADH, Cotter DJ, et al. The impact of sex on gene expression across human tissues. Science. 2020;369:3066. [DOI: 10.1126/science.aba3066]
  20. Aris IM, Rifas-Shiman SL, Li LJ, Kleinman KP, Coull BA, Gold DR, et al. Patterns of body mass index milestones in early life and cardiometabolic risk in early adolescence. Int J Epidemiol. 2019;48:157���67. [PMID: 30624710]
  21. Warrington NM, Wu YY, Pennell CE, Marsh JA, Beilin LJ, Palmer LJ, et al. Modelling BMI trajectories in children for genetic association studies. PLoS One. 2013;8:e53897. [PMID: 23349760]
  22. Bradfield JP, Taal HR, Timpson NJ, Scherag A, Lecoeur C, Warrington NM, et al. A genome-wide association meta-analysis identifies new childhood obesity loci. Nat Genet. 2012;44:526���31. [PMID: 22484627]
  23. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316:889���94. [PMID: 17434869]
  24. Couto Alves A, De Silva NMG, Karhunen V, Sovio U, Das S, Taal HR, et al. GWAS on longitudinal growth traits reveals different genetic factors influencing infant, child, and adult BMI. Sci Adv. 2019;5:3095. [DOI: 10.1126/sciadv.aaw3095]
  25. Wu YY, Lye S, Briollais L. The role of early life growth development, the FTO gene and exclusive breastfeeding on child BMI trajectories. Int J Epidemiol. 2017;46:1512���22. [PMID: 29040503]
  26. Sovio U, Mook-Kanamori DO, Warrington NM, Lawrence R, Briollais L, Palmer CN, et al. Association between common variation at the FTO locus and changes in body mass index from infancy to late childhood: the complex nature of genetic association through growth and development. PLoS Genet. 2011;7: e1001307. [PMID: 21379325]
  27. Ebong IA, Wilson MD, Appiah D, Michos ED, Racette SB, Villablanca A, et al. Relationship between age at menopause, obesity, and incident heart failure: the atherosclerosis risk in communities study. J Am Heart Assoc. 2022;11:e024461. [PMID: 35416049]
  28. Ciss�� AH, Taine M, Tafflet M, de Lauzon-Guillain B, Cl��ment K, Khalfallah O, et al. Cord blood leptin level and a common variant of its receptor as determinants of the BMI trajectory: the EDEN mother-child cohort. Pediatr Obes. 2022;17:e12955. [PMID: 35747935]
  29. Burnett LC, Skowronski AA, Rausch R, LeDuc CA, Leibel RL. Determination of the half-life of circulating leptin in the mouse. Int J Obes (Lond). 2017;41:355���9. [PMID: 28025576]
  30. Meyre D, Lecoeur C, Delplanque J, Francke S, Vatin V, Durand E, et al. A genome-wide scan for childhood obesity-associated traits in French families shows significant linkage on chromosome 6q22.31-q23.2. Diabetes. 2004;53:803���11. [PMID: 14988267]
  31. Fox CS, Pencina MJ, Heard-Costa NL, Shrader P, Jaquish C, O���Donnell CJ, et al. Trends in the association of parental history of obesity over 60 years. Obesity (Silver Spring). 2014;22:919���24. [PMID: 23836774]
  32. Wu Y, Lye S, Dennis CL, Briollais L. Exclusive breastfeeding can attenuate body-mass-index increase among genetically susceptible children: a longitudinal study from the ALSPAC cohort. PLoS Genet. 2020;16:e1008790. [PMID: 32525877]
  33. Belsky DW, Moffitt TE, Houts R, Bennett GG, Biddle AK, Blumenthal JA, et al. Polygenic risk, rapid childhood growth, and the development of obesity: evidence from a 4-decade longitudinal study. Arch Pediatr Adolesc Med. 2012;166:515���21. [PMID: 22665028]
  34. Warrington NM, Howe LD, Wu YY, Timpson NJ, Tilling K, Pennell CE, et al. Association of a body mass index genetic risk score with growth throughout childhood and adolescence. PLoS One. 2013;8:e79547. [PMID: 24244521]
  35. Ciss�� AH, Lioret S, de Lauzon-Guillain B, Forhan A, Ong KK, Charles MA, et al. Association between perinatal factors, genetic susceptibility to obesity and age at adiposity rebound in children of the EDEN mother-child cohort. Int J Obes (Lond). 2021;45:1802���10. [PMID: 33986455]
  36. Barbus C, Rayannavar A, Miller BS, Jenkins MJ, Addo OY, Rayes A, et al. Development of specific growth charts for children with Fanconi anemia. Am J Med Genet A. 2024;194:e63554. [PMID: 38317562]
  37. Soulier J. Fanconi anemia. Hematology Am Soc Hematol Educ Program. 2011;2011:492���7. [PMID: 22160080]
  38. Tenenbaum-Rakover Y, Almashanu S, Hess O, Admoni O, Hag-Dahood Mahameed A, Schwartz N, et al. Long-term outcome of loss-of-function mutations in thyrotropin receptor gene. Thyroid. 2015;25:292���9. [PMID: 25557138]
  39. Wong SC, Ng SM, Didi M. Children with congenital hypothyroidism are at risk of adult obesity due to early adiposity rebound. Clin Endocrinol (Oxf). 2004;61:441���6. [PMID: 15473876]
  40. Stolze BR, Gounden V, Gu J, Elliott EA, Masika LS, Abel BS, et al. An improved micro-method for the measurement of steroid profiles by APPI-LC-MS/MS and its use in assessing diurnal effects on steroid concentrations and optimizing the diagnosis and treatment of adrenal insufficiency and CAH. J Steroid Biochem Mol Biol. 2016;162:110���6. [PMID: 26721696]
  41. Takishima S, Nakajima K, Nomura R, Tsuji-Hosokawa A, Matsuda N, Matsubara Y, et al. Lower body weight and BMI at birth were associated with early adiposity rebound in 21-hydroxylase deficiency patients. Endocr J. 2016;63:983���90. [PMID: 27545660]
  42. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009;23:781���3. [PMID: 19339683]
  43. Jin F, Hu H, Xu M, Zhan S, Wang Y, Zhang H, et al. Serum microRNA profiles serve as novel biomarkers for autoimmune diseases. Front Immunol. 2018;9:2381. [PMID: 30459760]
  44. Takatani R, Yoshioka Y, Takahashi T, Watanabe M, Hisada A, Yamamoto M, et al. Investigation of umbilical cord serum miRNAs associated with childhood obesity: a pilot study from a birth cohort study. J Diabetes Investig. 2022;13:1740���4. [PMID: 35653294]
  45. Galante L, Pundir S, Lagstrom H, Rautava S, Reynolds CM, Milan AM, et al. Growth factor concentrations in human milk are associated with infant weight and BMI from birth to 5 years. Front Nutr. 2020;7:110. [PMID: 32850934]
  46. Kvaerner AS, Hang D, Giovannucci EL, Willett WC, Chan AT, Song M. Trajectories of body fatness from age 5 to 60 y and plasma biomarker concentrations of the insulin-insulin-like growth factor system. Am J Clin Nutr. 2018;108:388���97. [PMID: 30101328]
  47. Berryman DE, Glad CA, List EO, Johannsson G. The GH/IGF-1 axis in obesity: pathophysiology and therapeutic considerations. Nat Rev Endocrinol. 2013;9:346���56. [PMID: 23568441]
  48. Liu Y, Li Y, Liang J, Sun Z, Wu Q, Liu Y, et al. The mechanism of leptin on inhibiting fibrosis and promoting browning of white fat by reducing ITGA5 in mice. Int J Mol Sci. 2021;22:12353. [PMID: 34830238]
  49. Mooli RGR, Mukhi D, Watt M, Edmunds L, Xie B, Capooci J, et al. Sustained mitochondrial biogenesis is essential to maintain caloric restriction-induced beige adipocytes. Metabolism. 2020;107:154225. [PMID: 32275973]
  50. Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84:277���359. [PMID: 14715917]
  51. Gyurina K, Yarmak M, Sasi-Szabo L, Molnar S, Mehes G, Roszer T. Loss of uncoupling protein 1 expression in the subcutaneous adipose tissue predicts childhood obesity. Int J Mol Sci. 2023;24:16706. [PMID: 38069028]
  52. Hoang AC, Sasi-Szabo L, Pal T, Szabo T, Diedrich V, Herwig A, et al. Mitochondrial RNA stimulates beige adipocyte development in young mice. Nat Metab. 2022;4:1684���96. [PMID: 36443525]
  53. Lin D, Chen D, Huang J, Li Y, Wen X, Wang L, et al. Pre-birth and early-life factors associated with the timing of adiposity peak and rebound: a large population-based longitudinal study. Front Pediatr. 2021;9:742551. [PMID: 35004537]
  54. Haugen AC, Schug TT, Collman G, Heindel JJ. Evolution of DOHaD: the impact of environmental health sciences. J Dev Orig Health Dis. 2015;6:55���64. [PMID: 25471238]
  55. Yao S, Lopez-Tello J, Sferruzzi-Perri AN. Developmental programming of the female reproductive system-a review. Biol Reprod. 2021;104:745���70. [PMID: 33354727]
  56. Hakanen T, Saha MT, Salo MK, Nummi T, Harjunmaa U, Lipiainen L, et al. Mothers with gestational diabetes are more likely to give birth to children who experience early weight problems. Acta Paediatr. 2016;105:1166���72. [PMID: 27170551]
  57. Ip EH, Marshall SA, Saldana S, Skelton JA, Suerken CK, Arcury TA, et al. Determinants of adiposity rebound timing in children. J Pediatr. 2017;184:e2.
  58. Fan SQ, Yan SQ, Zhu BB, Li XZ, Tong J, Li CG, et al. Independent and combined effects of pre-pregnancy BMI and gestational diabetes on early adiposity rebound timing in children. Chin J Epidemiol. 2022;43:1626���31 (in Chinese).
  59. Camier A, Cisse AH, Lioret S, Bernard JY, Charles MA, Heude B, et al. Infant feeding practices associated with adiposity peak and rebound in the EDEN mother-child cohort. Int J Obes (Lond). 2022;46:809���16. [PMID: 34980907]
  60. Chivers P, Hands B, Parker H, Bulsara M, Beilin LJ, Kendall GE, et al. Body mass index, adiposity rebound and early feeding in a longitudinal cohort (Raine Study). Int J Obes (Lond). 2010;34:1169���76. [PMID: 20351733]
  61. Pedersen L, Lauritzen L, Brasholt M, Buhl T, Bisgaard H. Polyunsaturated fatty acid content of mother���s milk is associated with childhood body composition. Pediatr Res. 2012;72:631���6. [PMID: 23007033]
  62. Abarin T, Yan WuY, Warrington N, Lye S, Pennell C, Briollais L. The impact of breastfeeding on FTO-related BMI growth trajectories: an application to the Raine pregnancy cohort study. Int J Epidemiol. 2012;41:1650���60. [PMID: 23154192]
  63. Liu J, Song J, Gao D, Li Y, Guo T, Yuan W, et al. Exploring the associations between phthalate exposure and cardiometabolic risk factors clustering among children: the potential mediating role of insulin-resistant-related genes DNA methylation. J Hazard Mater. 2024;461:132578. [PMID: 37741207]
  64. Magge SN, Goodman E, Armstrong SC, Committee On N, Section On E, Section OO. The metabolic syndrome in children and adolescents: shifting the focus to cardiometabolic risk factor clustering. Pediatrics. 2017;140:e20171603. [PMID: 28739653]
  65. Canela-Xandri O, Rawlik K, Tenesa A. An atlas of genetic associations in UK Biobank. Nat Genet. 2018;50:1593���9. [PMID: 30349118]
  66. Staley JR, Blackshaw J, Kamat MA, Ellis S, Surendran P, Sun BB, et al. PhenoScanner: a database of human genotype-phenotype associations. Bioinformatics. 2016;32:3207���9. [PMID: 27318201]
  67. Zhou J, Teng Y, Zhang S, Yang M, Yan S, Tao F, et al. Birth outcomes and early growth patterns associated with age at adiposity rebound: the Ma���anshan birth cohort (MABC) study. BMC Public Health. 2023;23:2405. [PMID: 38049780]
  68. Abawi O, Wahab RJ, Kleinendorst L, Blankers LA, Brandsma AE, van Rossum EFC, et al. Genetic obesity disorders: body mass index trajectories and age of onset of obesity compared with children with obesity from the general population. J Pediatr. 2023;262:113619. [PMID: 37473986]
  69. Megersa BS, Andersen GS, Abera M, Abdissa A, Zinab B, Ali R, et al. Associations of early childhood body mass index trajectories with body composition and cardiometabolic markers at age 10 years: the Ethiopian infant anthropometry and body composition (iABC) birth cohort study. Am J Clin Nutr. 2024;119:1248���58. [PMID: 38458400]
  70. Pereira R, Araujo J, Severo M, Ramos E, Oliveira A. Disordered eating profiles in adolescence to early adulthood and future cardiometabolic health. Pediatrics. 2024;154:e2024066076. [PMID: 39568340]
  71. Wang G, Wei D, Kebede Merid S, Ekstrom S, Klevebro S, Hernandez-Pacheco N, et al. BMI trajectories from birth to young adulthood associate with distinct cardiometabolic profiles. BMC Med. 2024;22:510. [PMID: 39501285]
  72. Warrington NM, Howe LD, Paternoster L, Kaakinen M, Herrala S, Huikari V, et al. A genome-wide association study of body mass index across early life and childhood. Int J Epidemiol. 2015;44:700���12. [PMID: 25953783]
  73. Wang W, Tan JS, Hua L, Zhu S, Lin H, Wu Y, et al. Genetically predicted obesity causally increased the risk of hypertension disorders in pregnancy. Front Cardiovasc Med. 2022;9:888982. [PMID: 35694671]
  74. Flexeder C, Thiering E, Kratzsch J, Klumper C, Koletzko B, Muller MJ, et al. Is a child���s growth pattern early in life related to serum adipokines at the age of 10 years? Eur J Clin Nutr. 2014;68:25���31. [PMID: 24169460]
  75. Matsuzawa Y, Funahashi T, Kihara S, Shimomura I. Adiponectin and metabolic syndrome. Arterioscler Thromb Vasc Biol. 2004;24:29���33. [PMID: 14551151]
  76. Gill R, Cheung YH, Shen Y, Lanzano P, Mirza NM, Ten S, et al. Whole-exome sequencing identifies novel LEPR mutations in individuals with severe early onset obesity. Obesity (Silver Spring). 2014;22:576���84. [PMID: 23616257]
  77. Olza J, Ruperez AI, Gil-Campos M, Leis R, Canete R, Tojo R, et al. Leptin receptor gene variant rs11804091 is associated with bmi and insulin resistance in spanish female obese children: a case-control study. Int J Mol Sci. 2017;18:1690. [PMID: 28771179]
  78. Kohlsdorf K, Nunziata A, Funcke JB, Brandt S, von Schnurbein J, Vollbach H, et al. Early childhood BMI trajectories in monogenic obesity due to leptin, leptin receptor, and melanocortin 4 receptor deficiency. Int J Obes (Lond). 2018;42:1602���9. [PMID: 29568105]
  79. Dunstan J, Bressler JP, Moran TH, Pollak JS, Hirsch AG, Bailey-Davis L, et al. Associations of LEP, CRH, ICAM-1, and LINE-1 methylation, measured in saliva, with waist circumference, body mass index, and percent body fat in mid-childhood. Clin Epigenetics. 2017;9:29. [PMID: 28360946]
  80. Gallardo-Escribano C, Buonaiuto V, Ruiz-Moreno MI, Vargas-Candela A, Vilches-Perez A, Benitez-Porres J, et al. Epigenetic approach in obesity: DNA methylation in a prepubertal population which underwent a lifestyle modification. Clin Epigenetics. 2020;12:144. [PMID: 32967728]
  81. Klemp I, Hoffmann A, Muller L, Hagemann T, Horn K, Rohde-Zimmermann K, et al. DNA methylation patterns reflect individual���s lifestyle independent of obesity. Clin Transl Med. 2022;12:e851. [PMID: 35692099]
  82. Dorosty AR, Emmett PM, Cowin S, Reilly JJ. Factors associated with early adiposity rebound. ALSPAC Study Team Pediatrics. 2000;105:1115���8.
  83. Jonsson J, Renault KM, Garcia-Calzon S, Perfilyev A, Estampador AC, Norgaard K, et al. Lifestyle intervention in pregnant women with obesity impacts cord blood DNA methylation, which associates with body composition in the offspring. Diabetes. 2021;70:854���66. [PMID: 33431374]
  84. Assmann TS, Riezu-Boj JI, Milagro FI, Martinez JA. Circulating adiposity-related microRNAs as predictors of the response to a low-fat diet in subjects with obesity. J Cell Mol Med. 2020;24:2956���67. [PMID: 31968396]
  85. Kim MS, Shim I, Fahed AC, Do R, Park WY, Natarajan P, et al. Association of genetic risk, lifestyle, and their interaction with obesity and obesity-related morbidities. Cell Metab. 2024;36:1494���1503.e3. [PMID: 38959863]
  86. Bhargava SK, Sachdev HS, Fall CH, Osmond C, Lakshmy R, Barker DJ, et al. Relation of serial changes in childhood body-mass index to impaired glucose tolerance in young adulthood. N Engl J Med. 2004;350:865���75. [PMID: 14985484]
  87. Dulloo AG, Jacquet J, Seydoux J, Montani JP. The thrifty "catch-up fat" phenotype: its impact on insulin sensitivity during growth trajectories to obesity and metabolic syndrome. Int J Obes (Lond). 2006;30(Suppl 4):S23���35. [PMID: 17133232]
  88. Eriksson JG. Early growth and coronary heart disease and type 2 diabetes: findings from the Helsinki Birth Cohort Study (HBCS). Am J Clin Nutr. 2011;94(6 Suppl):1799S���802S. [PMID: 21613556]
  89. Eriksson JG, Forsen T, Tuomilehto J, Osmond C, Barker DJ. Early adiposity rebound in childhood and risk of type 2 diabetes in adult life. Diabetologia. 2003;46:190���4. [PMID: 12627317]
  90. Hubbard RA, Xu J, Siegel R, Chen Y, Eneli I. Studying pediatric health outcomes with electronic health records using Bayesian clustering and trajectory analysis. J Biomed Inform. 2021;113:103654. [PMID: 33309993]
  91. Mo-Suwan L, McNeil E, Sangsupawanich P, Chittchang U, Choprapawon C. Adiposity rebound from three to six years of age was associated with a higher insulin resistance risk at eight-and-a-half years in a birth cohort study. Acta Paediatr. 2017;106:128���34. [PMID: 27759899]
  92. Tresserra-Rimbau A, Castro-Barquero S, Vitelli-Storelli F, Becerra-Tomas N, Vazquez-Ruiz Z, Diaz-Lopez A, et al. Associations between dietary polyphenols and type 2 diabetes in a cross-sectional analysis of the PREDIMED-plus trial: role of body mass index and sex. Antioxidants (Basel). 2019;8:537. [PMID: 31717390]
  93. Wadsworth M, Butterworth S, Marmot M, Ecob R, Hardy R. Early growth and type 2 diabetes: evidence from the 1946 British birth cohort. Diabetologia. 2005;48:2505���10. [PMID: 16283235]
  94. Di Gravio C, Krishnaveni GV, Somashekara R, Veena SR, Kumaran K, Krishna M, et al. Comparing BMI with skinfolds to estimate age at adiposity rebound and its associations with cardiometabolic risk markers in adolescence. Int J Obes (Lond). 2019;43:683���90. [PMID: 30006579]
  95. Sovio U, Kaakinen M, Tzoulaki I, Das S, Ruokonen A, Pouta A, et al. How do changes in body mass index in infancy and childhood associate with cardiometabolic profile in adulthood? Findings from the Northern Finland Birth Cohort 1966 Study. Int J Obes (Lond). 2014;38:53���9. [PMID: 24080793]
  96. Drong AW, Lindgren CM, McCarthy MI. The genetic and epigenetic basis of type 2 diabetes and obesity. Clin Pharmacol Ther. 2012;92:707���15. [PMID: 23047653]
  97. Meeks KAC, Henneman P, Venema A, Addo J, Bahendeka S, Burr T, et al. Epigenome-wide association study in whole blood on type 2 diabetes among sub-Saharan African individuals: findings from the RODAM study. Int J Epidemiol. 2019;48:58���70. [PMID: 30107520]
  98. Amine Ikhanjal M, Ali Elouarid M, Zouine C, El Alami H, Errafii K, Ghazal H, et al. FTO gene variants (rs9939609, rs8050136 and rs17817449) and type 2 diabetes mellitus risk: a meta-analysis. Gene. 2023;887:147791. [PMID: 37696421]
  99. Bressler J, Kao WH, Pankow JS, Boerwinkle E. Risk of type 2 diabetes and obesity is differentially associated with variation in FTO in whites and African-Americans in the ARIC study. PLoS One. 2010;5:e10521. [PMID: 20502638]
  100. Do R, Bailey SD, Desbiens K, Belisle A, Montpetit A, Bouchard C, et al. Genetic variants of FTO influence adiposity, insulin sensitivity, leptin levels, and resting metabolic rate in the Quebec Family Study. Diabetes. 2008;57:1147���50. [PMID: 18316358]
  101. Elouej S, Nagara M, Attaoua R, Sallem OK, Rejeb I, Hsouna S, et al. Association of genetic variants in the FTO gene with metabolic syndrome: a case���control study in the Tunisian population. J Diabetes Complications. 2016;30:206���11. [PMID: 26700404]
  102. Saber-Ayad M, Manzoor S, El Serafi A, Mahmoud I, Hammoudeh S, Rani A, et al. The FTO rs9939609 ���A��� allele is associated with impaired fasting glucose and insulin resistance in Emirati population. Gene. 2019;681:93���8. [PMID: 30273662]
  103. Yang Y, Liu B, Xia W, Yan J, Liu HY, Hu L, et al. FTO genotype and type 2 diabetes mellitus: spatial analysis and meta-analysis of 62 case-control studies from different regions. Genes (Basel). 2017;8:70. [PMID: 28208657]
  104. Kim M, Jeong S, Yoo HJ, An H, Jee SH, Lee JH. Newly identified set of obesity-related genotypes and abdominal fat influence the risk of insulin resistance in a Korean population. Clin Genet. 2019;95:488���95. [PMID: 30653656]
  105. Song QY, Meng XR, Hinney A, Song JY, Huang T, Ma J, et al. Waist-hip ratio related genetic loci are associated with risk of impaired fasting glucose in Chinese children: a case���control study. Nutr Metab (Lond). 2018;15:34. [PMID: 29755575]
  106. Huang T, Glass K, Zeleznik OA, Kang JH, Ivey KL, Sonawane AR, et al. A network analysis of biomarkers for type 2 diabetes. Diabetes. 2019;68:281���90. [PMID: 30409783]
  107. Picu A, Petcu L, Stefan DS, Gradisteanu Pircalabioru G, Mitu M, Bajko D, et al. Evolution of inflammatory and oxidative stress markers in romanian obese male patients with type 2 diabetes mellitus after laparoscopic sleeve gastrectomy: one year follow-up. Metabolites. 2020;10:308. [PMID: 32731443]
  108. Rachdaoui N. Insulin: the friend and the foe in the development of type 2 diabetes mellitus. Int J Mol Sci. 2020;21:1770. [PMID: 32150819]
  109. Baggio LL, Drucker DJ. Glucagon-like peptide-1 receptors in the brain: controlling food intake and body weight. J Clin Invest. 2014;124:4223���6. [PMID: 25202976]
  110. Huang X, Liu G, Guo J, Su Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci. 2018;14:1483���96. [PMID: 30263000]
  111. Ofori JK, Salunkhe VA, Bagge A, Vishnu N, Nagao M, Mulder H, et al. Elevated miR-130a/miR130b/miR-152 expression reduces intracellular ATP levels in the pancreatic beta cell. Sci Rep. 2017;7:44986. [PMID: 28332581]
  112. Houshmand-Oeregaard A, Hansen NS, Hjort L, Kelstrup L, Broholm C, Mathiesen ER, et al. Differential adipokine DNA methylation and gene expression in subcutaneous adipose tissue from adult offspring of women with diabetes in pregnancy. Clin Epigenetics. 2017;9:37. [PMID: 28413567]
  113. Halipchuk J, Temple B, Dart A, Martin D, Sellers EAC. Prenatal, obstetric and perinatal factors associated with the development of childhood-onset type 2 diabetes. Can J Diabetes. 2018;42:71���7. [PMID: 28583472]
  114. Egom EE, Fitzgerald R, Canning R, Pharithi RB, Murphy C, Maher V. Determination of sphingosine-1-phosphate in human plasma using liquid chromatography coupled with Q-Tof mass spectrometry. Int J Mol Sci. 2017;18:1800. [PMID: 28820460]
  115. Niu M, Zhang L, Wang Y, Tu R, Liu X, Hou J, et al. Genetic factors increase the identification efficiency of predictive models for dyslipidaemia: a prospective cohort study. Lipids Health Dis. 2021;20:11. [PMID: 33579296]
  116. Jalili V, Mokhtari Z, Rastgoo S, Hajipour A, Bourbour F, Gholamalizadeh M, et al. The association between FTO rs9939609 polymorphism and serum lipid profile in adult women. Diabetol Metab Syndr. 2021;13:138. [PMID: 34801066]
  117. Inandiklioglu N, Yasar A. Association between rs1421085 and rs9939609 polymorphisms of fat mass and obesity-associated gene with high-density lipoprotein cholesterol and triglyceride in obese Turkish children and adolescents. J Pediatr Genet. 2021;10:9���15. [PMID: 33552632]
  118. Rana S, Bhatti AA. Association and interaction of the FTO rs1421085 with overweight/obesity in a sample of Pakistani individuals. Eat Weight Disord. 2020;25:1321���32. [PMID: 31468339]
  119. Shill LC, Alam MR. Crosstalk between FTO gene polymorphism (rs9939609) and obesity-related traits among Bangladeshi population. Health Sci Rep. 2023;6:e1414. [PMID: 37431487]
  120. Slezak R, Leszczynski P, Warzecha M, Laczmanski L, Misiak B. Assessment of the FTO gene polymorphisms in male patients with metabolic syndrome. Adv Clin Exp Med. 2018;27:1581���5. [PMID: 30091536]
  121. Ramos-Lopez O, Riezu-Boj JI, Milagro FI, Cuervo M, Goni L, Martinez JA. Prediction of blood lipid phenotypes using obesity-related genetic polymorphisms and lifestyle data in subjects with excessive body weight. Int J Genomics. 2018;2018:4283078. [PMID: 30581838]
  122. Viitasalo A, Schnurr TM, Pitkanen N, Hollensted M, Nielsen TRH, Pahkala K, et al. Abdominal adiposity and cardiometabolic risk factors in children and adolescents: a Mendelian randomization analysis. Am J Clin Nutr. 2019;110:1079���87. [PMID: 31504107]
  123. Umer A, Hamilton C, Edwards RA, Cottrell L, Giacobbi P Jr, Innes K, et al. Association between breastfeeding and childhood cardiovascular disease risk factors. Matern Child Health J. 2019;23:228���39. [PMID: 30499064]
  124. De Ita JR, Castilla-Cortazar I, Aguirre GA, Sanchez-Yago C, Santos-Ruiz MO, Guerra-Menendez L, et al. Altered liver expression of genes involved in lipid and glucose metabolism in mice with partial IGF-1 deficiency: an experimental approach to metabolic syndrome. J Transl Med. 2015;13:326. [PMID: 26467524]
  125. Eggert ML, Wallaschofski H, Grotevendt A, Nauck M, Volzke H, Samietz S, et al. Cross-sectional and longitudinal relation of IGF1 and IGF-binding protein 3 with lipid metabolism. Eur J Endocrinol. 2014;171:9���19. [PMID: 24743393]
  126. Hussain M, Waheed A, Elahi A, Mustafa G. Fat mass and obesity-related (FTO) gene variant is a predictor of CVD in T2DM patients. J Diabetes Res. 2024;2024:5914316. [PMID: 39257882]
  127. Sharma T, Badaruddoza B. Genetic association of FTO gene polymorphisms with obesity and its related phenotypes: a case���control study. J Cardiovasc Thorac Res. 2024;16:102���12. [PMID: 39253342]
  128. Xi B, Zhao X, Shen Y, Wu L, Hotta K, Hou D, et al. Associations of obesity susceptibility loci with hypertension in Chinese children. Int J Obes (Lond). 2013;37:926���30. [PMID: 23588626]
  129. Xi B, Zhao X, Chandak GR, Shen Y, Cheng H, Hou D, et al. Influence of obesity on association between genetic variants identified by genome-wide association studies and hypertension risk in Chinese children. Am J Hypertens. 2013;26:990���6. [PMID: 23591986]
  130. Magnus MC, Wallace MK, Demirci JR, Catov JM, Schmella MJ, Fraser A. Breastfeeding and later-life cardiometabolic health in women with and without hypertensive disorders of pregnancy. J Am Heart Assoc. 2023;12:e026696. [PMID: 36847057]
  131. Wong PD, Anderson LN, Dai DDW, Parkin PC, Maguire JL, Birken CS, et al. The association of breastfeeding duration and early childhood cardiometabolic risk. J Pediatr. 2018;192:80���5.e1. [PMID: 29246362]
  132. Xargay-Torrent S, Dorado-Ceballos E, Benavides-Boixader A, Lizarraga-Mollinedo E, Mas-Pares B, Montesinos-Costa M, et al. Circulating IGF-1 independently predicts blood pressure in children with higher calcium-phosphorus product levels. J Clin Endocrinol Metab. 2020;105:dgz01. [DOI: 10.1210/clinem/dgz101]

Grants

  1. U22A20361/National Natural Science Foundation of China

Word Cloud

Created with Highcharts 10.0.0ARgeneticcardiometabolicabnormalitiesagemechanismsearlierriskcanearlylifehealthAdiposityreboundrolesearchLEPRTFAP2Bgenessusceptibilitygrowthobesity-relatedvariantsaxisBACKGROUND:IdentifyingeffectivepredictorscrucialenabletimelypreventioninterventionimproveoutcomesimportantperiodincreasingHowevermechanismfactorsassociationunclearThereforestudyreviewspotentialinfluencingwelllinkingDATASOURCES:comprehensiveliteratureconductedPubMedChinaNationalKnowledgeInfrastructuredatabasesusingcombinationmedicalsubjectheadingstermsrelatedkeywordsincluding"adiposityrebound""cardiometabolic""obesity""BMItrajectory""diabetesmellitus""dyslipidemias""hypertension""metabolicsyndrome""genetics""epigenetic"Citationtrackingperformedsupplementarystrategypotentiallyrelevantarticlessubsequentlysubjectedfull-textevaluationeligibilityassessmentRESULTS:PolymorphismsDMRT1FTOalongobesityinfluenceSingle-nucleotidepolymorphismsassociatedenrichedinsulin-likefactor1IGF-1signalingpathwaymodulatedSharedinfluencedregulatehormoneGH/IGF-1advancingleadingEarlieraltersadiponectinleptinlevelsactivatingGH/IGF-1creatingviciouscycleLong-termbreastfeedingcounteractadverseeffectstimingtherebyreducingCONCLUSIONS:resultssupportmarkeridentifyingscreeninghigh-riskpopulationslevelImpactchildrenadiposityrebound:CardiometabolicEpigeneticsGenetics

Similar Articles

Cited By