Pharmacokinetic variability and significance of therapeutic drug monitoring for broad-spectrum antimicrobials in critically ill patients.

Ryota Tanaka
Author Information
  1. Ryota Tanaka: Department of Clinical Pharmacy, Oita University Hospital, Yufu, Oita, Japan. rtanaka@oita-u.ac.jp.

Abstract

Critically ill patients are susceptible to serious infections due to their compromised conditions and extensive use of medical devices, often requiring empiric broad-spectrum antimicrobial therapy. Failure of antimicrobial therapy in this vulnerable population has a direct impact on the patient's survival; hence, selecting the optimal dosage is critical. This population, however, exhibits complex and diverse disease-related physiological changes that can markedly alter antimicrobial disposition. Inflammatory cytokines overexpressed in the systemic inflammatory response syndrome increase vascular permeability, leading to higher volume of distribution for hydrophilic antimicrobials. These cytokines also downregulate metabolic enzyme activities, reducing the clearance of their substrates. Hypoalbuminemia can increase the volume of distribution and clearance of highly protein-bound antimicrobials. Acute kidney injury decreases, while augmented renal clearance increases the clearance of antimicrobials primarily excreted by the kidneys. Furthermore, continuous renal replacement therapy and extracorporeal membrane oxygenation used in critical illness substantially affect antimicrobial pharmacokinetics. The complex interplay of multiple factors observed in critically ill patients poses a significant challenge in predicting the pharmacokinetics of antimicrobials. Therapeutic drug monitoring is the most effective tool to address this issue, and is proactively recommended for vancomycin, teicoplanin, aminoglycosides, voriconazole, β-lactams, and linezolid in critically ill patients. To streamline this process, model-informed precision dosing is expected to promote personalized medicine for this population.

Keywords

References

  1. Biol Pharm Bull. 2022;45(8):1084-1090 [PMID: 35908890]
  2. Int J Antimicrob Agents. 2023 Apr;61(4):106750 [PMID: 36758777]
  3. J Antimicrob Chemother. 2016 Jul;71(7):1786-99 [PMID: 27165788]
  4. J Antimicrob Chemother. 2019 Oct 1;74(10):2984-2993 [PMID: 31273375]
  5. Int J Antimicrob Agents. 2012 Jun;39(6):455-7 [PMID: 22483562]
  6. Crit Care Med. 2009 May;37(5):1634-41 [PMID: 19325489]
  7. Am J Cardiol. 2024 Jun 15;221:84-93 [PMID: 38649128]
  8. Nat Rev Nephrol. 2011 Jul 19;7(9):539-43 [PMID: 21769107]
  9. Antibiotics (Basel). 2023 Apr 16;12(4): [PMID: 37107125]
  10. Am J Emerg Med. 2024 Feb;76:48-54 [PMID: 37995523]
  11. Clin Pharmacol Ther. 2021 Apr;109(4):928-941 [PMID: 33565627]
  12. Blood Purif. 2010;30(3):195-212 [PMID: 20924175]
  13. J Antimicrob Chemother. 2021 Oct 11;76(11):2932-2940 [PMID: 34480578]
  14. BMC Neurol. 2020 May 16;20(1):190 [PMID: 32416729]
  15. Antimicrob Agents Chemother. 2015 May;59(5):2942-3 [PMID: 25733507]
  16. Antimicrob Agents Chemother. 2016 Jul 22;60(8):4901-9 [PMID: 27270279]
  17. Arch Gerontol Geriatr. 1999 Jul-Aug;29(1):75-94 [PMID: 15374079]
  18. Crit Care. 2024 Nov 19;28(1):376 [PMID: 39563441]
  19. Artif Organs. 2008 Jan;32(1):81-4 [PMID: 18181809]
  20. Clin Infect Dis. 2022 Nov 14;75(10):1848-1860 [PMID: 35731853]
  21. Sci Rep. 2022 Dec 19;12(1):21891 [PMID: 36535989]
  22. Antimicrob Agents Chemother. 2010 Nov;54(11):4851-63 [PMID: 20733044]
  23. J Antimicrob Chemother. 2017 Oct 1;72(10):2891-2897 [PMID: 29091190]
  24. J Antimicrob Chemother. 2019 Jun 1;74(6):1648-1655 [PMID: 30838391]
  25. Clin Infect Dis. 2014 Apr;58(8):1072-83 [PMID: 24429437]
  26. Pharmacotherapy. 2019 Mar;39(3):346-354 [PMID: 30723936]
  27. Pathol Oncol Res. 2022 Jan 04;27:1610136 [PMID: 35058736]
  28. Ther Drug Monit. 2022 Feb 1;44(1):86-102 [PMID: 34772891]
  29. Clin Pharmacokinet. 2006;45(8):755-73 [PMID: 16884316]
  30. Clin Microbiol Infect. 2022 Jul;28(7):1022.e9-1022.e16 [PMID: 35182756]
  31. Crit Care. 2010;14(4):R126 [PMID: 20594297]
  32. Minerva Anestesiol. 2015 May;81(5):497-506 [PMID: 25220556]
  33. J Clin Med. 2024 Apr 17;13(8): [PMID: 38673590]
  34. Int J Antimicrob Agents. 2024 Feb;63(2):107078 [PMID: 38161046]
  35. J Artif Organs. 2021 Mar;24(1):65-73 [PMID: 33033945]
  36. Ther Drug Monit. 2022 Aug 1;44(4):543-551 [PMID: 35821590]
  37. Crit Care. 2024 Oct 4;28(1):326 [PMID: 39367501]
  38. Crit Care Med. 2009 Jul;37(7):2203-9 [PMID: 19487937]
  39. Crit Care. 2015 Apr 14;19:164 [PMID: 25888449]
  40. BMC Nephrol. 2018 Jun 25;19(1):149 [PMID: 29940876]
  41. J Antimicrob Chemother. 2016 Feb;71(2):464-70 [PMID: 26538503]
  42. Clin Pharmacokinet. 2007;46(12):997-1038 [PMID: 18027987]
  43. J Antimicrob Chemother. 2022 Mar 31;77(4):869-879 [PMID: 35022752]
  44. Ther Drug Monit. 2020 Feb;42(1):83-92 [PMID: 31652190]
  45. Intensive Care Med. 2020 Jun;46(6):1127-1153 [PMID: 32383061]
  46. J Antimicrob Chemother. 2016 Jun;71(6):1643-50 [PMID: 26957490]
  47. J Antimicrob Chemother. 2017 Jan;72(1):261-267 [PMID: 27601292]
  48. J Am Geriatr Soc. 2013 Dec;61(12):2065-2071 [PMID: 24479140]
  49. JAMA. 2009 Dec 2;302(21):2323-9 [PMID: 19952319]
  50. Crit Care Med. 2014 Jul;42(7):1640-50 [PMID: 24674926]
  51. J Antimicrob Chemother. 2018 Nov 1;73(11):3087-3094 [PMID: 30137377]
  52. J Pharm Biomed Anal. 2019 Feb 20;165:56-64 [PMID: 30502552]
  53. Anaesth Intensive Care. 2012 May;40(3):442-9 [PMID: 22577909]
  54. J Antimicrob Chemother. 2007 May;59(5):952-6 [PMID: 17389717]
  55. Pediatr Blood Cancer. 2019 Jun;66(6):e27654 [PMID: 30740885]
  56. Crit Care. 2012 Oct 15;16(5):R194 [PMID: 23068416]
  57. Antibiotics (Basel). 2024 Oct 30;13(11): [PMID: 39596718]
  58. Int J Antimicrob Agents. 2017 May;49(5):624-630 [PMID: 28286115]
  59. J Clin Pharm Ther. 2020 Oct;45(5):1120-1126 [PMID: 32497262]
  60. Acta Clin Belg. 2006 Sep-Oct;61(5):220-6 [PMID: 17240735]
  61. Healthcare (Basel). 2019 Jan 14;7(1): [PMID: 30646533]
  62. Eur J Drug Metab Pharmacokinet. 2023 Nov;48(6):623-631 [PMID: 37715056]
  63. Chest. 2012 Jul;142(1):30-39 [PMID: 22194591]
  64. Clin Pharmacokinet. 2011 Feb;50(2):99-110 [PMID: 21142293]
  65. J Intensive Care Med. 2020 Oct;35(10):1044-1052 [PMID: 30373438]
  66. Chest. 2011 May;139(5):1210-1220 [PMID: 21540219]
  67. J Antimicrob Chemother. 2023 Nov 6;78(11):2630-2636 [PMID: 37796931]
  68. Clin Microbiol Infect. 2008 Jan;14(1):5-13 [PMID: 17944969]
  69. Chemotherapy. 2020;65(3-4):59-64 [PMID: 32877905]
  70. Eur J Clin Microbiol Infect Dis. 2017 Mar;36(3):553-563 [PMID: 27815778]
  71. Circulation. 2010 May 18;121(19):2117-22 [PMID: 20439784]
  72. Clin Pharmacokinet. 2018 Sep;57(9):1107-1121 [PMID: 29441476]
  73. Eur J Hosp Pharm. 2022 Mar;29(e1):e72-e76 [PMID: 34764144]
  74. Clin J Am Soc Nephrol. 2010 Oct;5(10):1745-54 [PMID: 20576828]
  75. Clin Microbiol Infect. 2017 Jul;23(7):454-459 [PMID: 28111294]
  76. Intensive Care Med. 1996 Jul;22(7):707-10 [PMID: 8844239]
  77. J Intensive Care. 2019 Nov 21;7:51 [PMID: 31832200]
  78. Clin Pharmacol Ther. 2021 Jun;109(6):1668-1676 [PMID: 33341941]
  79. Am J Kidney Dis. 2011 Sep;58(3):356-65 [PMID: 21601330]
  80. Int J Antimicrob Agents. 2012 May;39(5):420-3 [PMID: 22386742]
  81. Lancet. 2012 Aug 25;380(9843):756-66 [PMID: 22617274]
  82. Ther Drug Monit. 2016 Jun;38(3):393-7 [PMID: 27172381]
  83. Clin Pharmacokinet. 2021 Jan;60(1):53-68 [PMID: 32960439]
  84. J Pharmacol Sci. 2007 Sep;105(1):1-5 [PMID: 17827872]
  85. Int J Antimicrob Agents. 2022 May;59(5):106569 [PMID: 35288259]
  86. J Pharm Biomed Anal. 2022 Sep 20;219:114929 [PMID: 35816774]
  87. Sci Rep. 2020 Dec 17;10(1):22148 [PMID: 33335198]
  88. Adv Drug Deliv Rev. 2014 Nov 20;77:3-11 [PMID: 25038549]

Grants

  1. JP17K15512/Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS)

Word Cloud

Created with Highcharts 10.0.0antimicrobialsillpatientsantimicrobialclearancetherapypopulationcriticallydrugmonitoringbroad-spectrumcriticalcomplexcancytokinesincreasevolumedistributionrenalillnesspharmacokineticsTherapeuticCriticallysusceptibleseriousinfectionsduecompromisedconditionsextensiveusemedicaldevicesoftenrequiringempiricFailurevulnerabledirectimpactpatient'ssurvivalhenceselectingoptimaldosagehoweverexhibitsdiversedisease-relatedphysiologicalchangesmarkedlyalterdispositionInflammatoryoverexpressedsystemicinflammatoryresponsesyndromevascularpermeabilityleadinghigherhydrophilicalsodownregulatemetabolicenzymeactivitiesreducingsubstratesHypoalbuminemiahighlyprotein-boundAcutekidneyinjurydecreasesaugmentedincreasesprimarilyexcretedkidneysFurthermorecontinuousreplacementextracorporealmembraneoxygenationusedsubstantiallyaffectinterplaymultiplefactorsobservedposessignificantchallengepredictingeffectivetooladdressissueproactivelyrecommendedvancomycinteicoplaninaminoglycosidesvoriconazoleβ-lactamslinezolidstreamlineprocessmodel-informedprecisiondosingexpectedpromotepersonalizedmedicinePharmacokineticvariabilitysignificancetherapeuticAntimicrobialsCriticalFebrileneutropeniaIntensivecarePharmacokinetics/pharmacodynamics

Similar Articles

Cited By