Particle-Associated Bacterioplankton Communities Across the Red Sea.

Larissa Fr��he, Shannon G Klein, Carlos Angulo-Preckler, Anastasiia Martynova, Taiba Alamoudi, Jacqueline V Alva Garc��a, Silvia Arossa, Jessica Breavington, Sofia Frappi, Elisa Laiolo, Kah Kheng Lim, Anieka J Parry, Eleonora Re, Diego E Rivera Rosas, Mattie Rodrigue, Alexandra Steckbauer, Vincent A Pieribone, Mohammad A Qurban, Carlos M Duarte
Author Information
  1. Larissa Fr��he: Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia. ORCID
  2. Shannon G Klein: Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
  3. Carlos Angulo-Preckler: Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
  4. Anastasiia Martynova: Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
  5. Taiba Alamoudi: Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
  6. Jacqueline V Alva Garc��a: Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
  7. Silvia Arossa: Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
  8. Jessica Breavington: Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
  9. Sofia Frappi: Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
  10. Elisa Laiolo: Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
  11. Kah Kheng Lim: Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
  12. Anieka J Parry: Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
  13. Eleonora Re: Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
  14. Diego E Rivera Rosas: Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
  15. Mattie Rodrigue: OceanX, New York, New York, USA.
  16. Alexandra Steckbauer: Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
  17. Vincent A Pieribone: OceanX, New York, New York, USA.
  18. Mohammad A Qurban: National Center for Wildlife (NCW), Riyadh, Kingdom of Saudi Arabia.
  19. Carlos M Duarte: Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.

Abstract

Pelagic particle-associated bacterioplankton play crucial roles in marine ecosystems, influencing biogeochemical cycling and ecosystem functioning. However, their diversity, composition, and dynamics remain poorly understood, particularly in unique environments such as the Red Sea. In this study, we employed eDNA metabarcoding to comprehensively characterise bacterioplankton communities associated with pelagic particles in a three-dimensional assessment spanning depths from the surface to a depth of 2300���m along the full length of the eastern Red Sea within the exclusive economic zone of the Kingdom of Saudi Arabia. Our results reveal a diverse assemblage of taxa, with Pseudomonadota, Cyanobacteriota, and Planctomycetota being the dominant phyla. We identified pronounced spatial variability in community composition among five major Red Sea geographical regions, with a third of all amplicon sequence variants being unique to the Southern Red Sea in contrast to a relatively homogenous distribution along the water column depth gradient. Our findings contribute to a deeper understanding of microbial ecology in the Red Sea and provide valuable insights into the factors governing pelagic particle-associated bacterioplankton communities in this basin.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2008 Jun 24;105(25):8487-8 [PMID: 18559849]
  2. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  3. PLoS One. 2013 Apr 22;8(4):e61217 [PMID: 23630581]
  4. Science. 2015 Jun 5;348(6239):1132-5 [PMID: 26045435]
  5. Nat Rev Microbiol. 2018 Dec;16(12):723-729 [PMID: 30250271]
  6. FEMS Microbiol Ecol. 2005 Jan 1;51(2):265-77 [PMID: 16329875]
  7. Mol Ecol. 2012 Jan;21(2):388-405 [PMID: 22133021]
  8. Sci Adv. 2018 Jun 27;4(6):eaar5637 [PMID: 29963625]
  9. ISME J. 2015 Mar;9(3):563-80 [PMID: 25203836]
  10. Proc Natl Acad Sci U S A. 2008 Jun 3;105(22):7774-8 [PMID: 18509059]
  11. Microorganisms. 2023 Feb 26;11(3): [PMID: 36985166]
  12. Environ Microbiol. 2013 May;15(5):1262-74 [PMID: 23419081]
  13. Nat Rev Microbiol. 2015 Mar;13(3):133-46 [PMID: 25659323]
  14. Sci Rep. 2019 Feb 14;9(1):2044 [PMID: 30765793]
  15. Nat Commun. 2015 Jul 09;6:7608 [PMID: 26158221]
  16. ISME J. 2011 Oct;5(10):1571-9 [PMID: 21472016]
  17. Nature. 2005 Sep 15;437(7057):349-55 [PMID: 16163345]
  18. Proc Natl Acad Sci U S A. 2018 Jul 17;115(29):E6799-E6807 [PMID: 29967136]
  19. Appl Environ Microbiol. 2007 Aug;73(16):5261-7 [PMID: 17586664]
  20. Appl Environ Microbiol. 2014 Oct;80(19):5992-6003 [PMID: 25063663]
  21. Sci Rep. 2014 Jul 25;4:5821 [PMID: 25059241]
  22. Ann Rev Mar Sci. 2021 Jan;13:81-108 [PMID: 32726567]
  23. ISME J. 2010 Apr;4(4):564-76 [PMID: 20010630]
  24. Microbiome. 2018 Dec 17;6(1):226 [PMID: 30558668]
  25. Front Microbiol. 2019 Jan 07;9:3244 [PMID: 30666244]
  26. BMC Bioinformatics. 2012 Oct 31;13:283 [PMID: 23113967]
  27. Glob Chang Biol. 2018 Feb;24(2):e474-e484 [PMID: 29044761]
  28. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 [PMID: 23193283]
  29. ISME J. 2009 Oct;3(10):1148-63 [PMID: 19494846]
  30. Nature. 2002 Dec 19-26;420(6917):806-10 [PMID: 12490947]
  31. Front Microbiol. 2022 Mar 31;13:780530 [PMID: 35432231]
  32. Ann Rev Mar Sci. 2011;3:401-25 [PMID: 21329211]
  33. Mol Syst Biol. 2012 Jul 17;8:595 [PMID: 22806143]
  34. Environ Microbiol Rep. 2011 Aug;3(4):449-58 [PMID: 23761307]
  35. Environ Microbiol Rep. 2018 Apr;10(2):184-189 [PMID: 29377623]
  36. Ambio. 2015 Jun;44 Suppl 3:345-56 [PMID: 26022318]
  37. PLoS One. 2013 Jun 05;8(6):e64909 [PMID: 23755161]
  38. Science. 2008 May 23;320(5879):1034-9 [PMID: 18497287]
  39. Nature. 2017 Feb 15;542(7641):335-339 [PMID: 28202958]
  40. Nat Methods. 2013 Jan;10(1):57-9 [PMID: 23202435]
  41. Proc Natl Acad Sci U S A. 2018 Aug 28;115(35):E8266-E8275 [PMID: 30108147]
  42. Sci Total Environ. 2020 Jun 10;720:137573 [PMID: 32143047]
  43. Environ Microbiol. 2018 Aug;20(8):2990-3000 [PMID: 30051643]
  44. Ann Rev Mar Sci. 2010;2:199-229 [PMID: 21141663]
  45. Environ Microbiol. 2023 Oct;25(10):2002-2019 [PMID: 37286523]
  46. Front Microbiol. 2020 Mar 19;11:449 [PMID: 32265880]
  47. Int J Syst Evol Microbiol. 2020 Nov;70(11):5607-5612 [PMID: 32701423]
  48. Nat Rev Microbiol. 2007 Oct;5(10):782-91 [PMID: 17853906]
  49. Philos Trans R Soc Lond B Biol Sci. 2010 Jul 12;365(1549):2137-49 [PMID: 20513721]
  50. Science. 2015 May 22;348(6237):1261359 [PMID: 25999513]
  51. Nature. 2020 Sep;585(7826):557-562 [PMID: 32939093]
  52. Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9824-9 [PMID: 23703908]
  53. ISME J. 2014 Nov;8(11):2167-79 [PMID: 24763371]
  54. Proc Biol Sci. 2015 Jul 7;282(1810): [PMID: 26063843]
  55. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6578-83 [PMID: 9618454]
  56. Mol Biol Evol. 2010 Feb;27(2):347-57 [PMID: 19808864]

Grants

  1. /National Center of Wildlife
  2. /King Abdullah University of Science and Technology

MeSH Term

Indian Ocean
Seawater
Plankton
Bacteria
Ecosystem
Microbiota
Saudi Arabia
Phylogeny
Biodiversity
RNA, Ribosomal, 16S

Chemicals

RNA, Ribosomal, 16S

Word Cloud

Created with Highcharts 10.0.0RedSeabacterioplanktoncommunitiesmicrobialparticle-associatedcompositionuniquepelagicdepthalongecologyPelagicplaycrucialrolesmarineecosystemsinfluencingbiogeochemicalcyclingecosystemfunctioningHoweverdiversitydynamicsremainpoorlyunderstoodparticularlyenvironmentsstudyemployedeDNAmetabarcodingcomprehensivelycharacteriseassociatedparticlesthree-dimensionalassessmentspanningdepthssurface2300���mfulllengtheasternwithinexclusiveeconomiczoneKingdomSaudiArabiaresultsrevealdiverseassemblagetaxaPseudomonadotaCyanobacteriotaPlanctomycetotadominantphylaidentifiedpronouncedspatialvariabilitycommunityamongfivemajorgeographicalregionsthirdampliconsequencevariantsSoutherncontrastrelativelyhomogenousdistributionwatercolumngradientfindingscontributedeeperunderstandingprovidevaluableinsightsfactorsgoverningbasinParticle-AssociatedBacterioplanktonCommunitiesAcrossbacteriaenvironmentalgenomics

Similar Articles

Cited By

No available data.