Transforming Growth Factor-β Signaling Inhibits the Osteogenic Differentiation of Mesenchymal Stem Cells via Activation of Wnt/β-Catenin Pathway.

Mahsa Tahoori, Azita Parvaneh Tafreshi, Fatemeh Naghshnejad, Bahman Zeynali
Author Information
  1. Mahsa Tahoori: Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran.
  2. Azita Parvaneh Tafreshi: Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran.
  3. Fatemeh Naghshnejad: Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran.
  4. Bahman Zeynali: Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran.

Abstract

BACKGROUND: Due to the contradictory and temporally variable effects of transforming growth factor-β (TGF-β) and the Wnt/β-catenin pathways on osteogenic differentiation in different stem cell types, we sought to examine the activity of these pathways as well as their interaction during the osteogenic differentiation of the osteo-induced adiposederived mesenchymal stem cells (AD-MSCs).
METHODS: The osteo-induced AD-MSCs were treated with TGF-β1 (1 ng/mL) either alone or together with its antagonist SB- 431542 (10 μM) or that of the Wnt antagonist, inhibitor of Wnt production 2 (IWP2) (3 μM), every 3 days for 21 days. Cells were then analyzed for calcium deposit, bone matrix production, and the osteogenic markers gene expression.
RESULTS: Our results showed firstly that, either of the pathways is active since the mRNA expressions of their respective target genes, PAI-1 and Cyclin D1 were detectable although the latter was at a very low level. Secondly that, treatment with TGF-β1 decreased levels of calcium deposit, bone matrix production and the osteogenic markers gene expression. Accordingly, osteogenesis was induced in those treated with SB either alone or together with the TGF-β1, pointing to inhibitory effect of TGF-β pathway on osteogenic differentiation. Thirdly that following treatment with IWP2 and TGF-β1, the inhibitory effect of TGF-β1 on bone matrix production was reversed. Fourthly, there was constantly low expression of Wnt3amRNA but progressively increasing that of its endogenous antagonist Dkk-1mRNA throughout.
CONCLUSIONS: Together these results suggest that TGF-β1 requires the active Wnt/β-catenin signaling pathway to exert its inhibitory effects on osteogenic differentiation of AD-MSCs.

Keywords

References

  1. J Cell Biochem. 2004 Dec 15;93(6):1210-30 [PMID: 15486964]
  2. Int J Biochem Cell Biol. 2004 Apr;36(4):568-84 [PMID: 15010324]
  3. Cell Prolif. 2020 Nov;53(11):e12904 [PMID: 32997394]
  4. J Bone Miner Res. 2007 Nov;22(11):1720-31 [PMID: 17680723]
  5. BMB Rep. 2012 Sep;45(9):509-14 [PMID: 23010171]
  6. Stem Cell Reports. 2024 Jul 9;19(7):973-992 [PMID: 38942030]
  7. Tissue Eng. 2004 Mar-Apr;10(3-4):393-401 [PMID: 15165456]
  8. Tissue Eng Part A. 2010 Feb;16(2):725-33 [PMID: 19769530]
  9. J Cell Physiol. 2019 Jun;234(6):9687-9697 [PMID: 30387130]
  10. J Exp Med. 2004 Jul 19;200(2):123-35 [PMID: 15263023]
  11. EMBO J. 2004 Feb 11;23(3):552-63 [PMID: 14749725]
  12. Int J Med Sci. 2020 Jul 2;17(12):1692-1703 [PMID: 32714072]
  13. Nat Commun. 2012 Mar 13;3:735 [PMID: 22415826]
  14. Mol Cell Biol. 2000 Dec;20(23):8783-92 [PMID: 11073979]
  15. J Biol Chem. 2005 Sep 30;280(39):33132-40 [PMID: 16043491]
  16. PLoS One. 2014 Feb 27;9(2):e89179 [PMID: 24586576]
  17. Mol Cell Biochem. 2015 Dec;410(1-2):55-63 [PMID: 26260053]
  18. Bone Res. 2018 Jan 31;6:2 [PMID: 29423331]
  19. J Orthop Sci. 2003;8(5):740-8 [PMID: 14557946]
  20. J Cell Commun Signal. 2022 Mar;16(1):47-61 [PMID: 34236594]
  21. Cell Prolif. 2020 Oct;53(10):e12907 [PMID: 32951298]
  22. J Bone Miner Res. 2005 Oct;20(10):1867-77 [PMID: 16160745]
  23. EMBO J. 2001 May 1;20(9):2254-72 [PMID: 11331591]
  24. J Cell Biochem. 2018 Nov;119(11):9327-9333 [PMID: 30074269]
  25. Int J Biol Sci. 2012;8(2):272-88 [PMID: 22298955]
  26. Mol Cell Biol. 2001 Aug;21(15):5132-41 [PMID: 11438668]
  27. J Cell Biochem. 2011 Jun;112(6):1651-60 [PMID: 21344492]
  28. Cell. 2001 Nov 16;107(4):513-23 [PMID: 11719191]
  29. Growth Regul. 1993 Dec;3(4):209-14 [PMID: 8130729]
  30. J Bone Joint Surg Am. 2001;83-A Suppl 1(Pt 1):S31-9 [PMID: 11263663]
  31. Stem Cells Int. 2012;2012:812693 [PMID: 22577397]
  32. Photochem Photobiol. 2023 Jul-Aug;99(4):1181-1192 [PMID: 36437584]
  33. Proc Natl Acad Sci U S A. 2005 Mar 1;102(9):3324-9 [PMID: 15728361]
  34. Cancer Res. 2007 Jan 1;67(1):75-84 [PMID: 17210685]

Word Cloud

Created with Highcharts 10.0.0osteogenicTGF-β1differentiationproduction·pathwaysstemAD-MSCseitherantagonistWntbonematrixexpressioninhibitorypathwayeffectsgrowthTGF-βWnt/β-cateninosteo-inducedcellstreatedalonetogetherμMIWP23daysCellscalciumdepositmarkersgeneresultsactivelowtreatmenteffectsignalingTransformingMesenchymalBACKGROUND:Duecontradictorytemporallyvariabletransformingfactor-βdifferentcelltypessoughtexamineactivitywellinteractionadiposederivedmesenchymalMETHODS:1ng/mLSB-43154210inhibitor2every21analyzedRESULTS:showedfirstlysincemRNAexpressionsrespectivetargetgenesPAI-1CyclinD1detectablealthoughlatterlevelSecondlydecreasedlevelsAccordinglyosteogenesisinducedSBpointingThirdlyfollowingreversedFourthlyconstantlyWnt3amRNAprogressivelyincreasingendogenousDkk-1mRNAthroughoutCONCLUSIONS:TogethersuggestrequiresexertGrowthFactor-βSignalingInhibitsOsteogenicDifferentiationStemviaActivationWnt/β-CateninPathwayBetacateninOsteogenesisfactorbeta1

Similar Articles

Cited By