Image-Guided Monitoring of Mitochondria and Blood-Brain Barrier Dysfunction in Amyotrophic Lateral Sclerosis Mice.

Do Won Hwang, Jinhui Ser, Konstantyn Ziabrev, G Kate Park, Min Joo Jo, Shinya Yokomizo, Kai Bao, Atsushi Yamashita, Hoonsung Cho, Maged Henary, Satoshi Kashiwagi, Hak Soo Choi
Author Information
  1. Do Won Hwang: Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
  2. Jinhui Ser: Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
  3. Konstantyn Ziabrev: Department of Chemistry, Center of Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
  4. G Kate Park: Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
  5. Min Joo Jo: Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
  6. Shinya Yokomizo: Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
  7. Kai Bao: Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
  8. Atsushi Yamashita: Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
  9. Hoonsung Cho: Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, South Korea.
  10. Maged Henary: Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
  11. Satoshi Kashiwagi: Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. ORCID
  12. Hak Soo Choi: Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. ORCID

Abstract

Early detection of Amyotrophic Lateral Sclerosis (ALS) progression is critical for improving disease management and therapeutic outcomes. However, the clinical heterogeneity and variability in ALS symptoms often lead to delayed diagnosis and suboptimal therapeutic interventions. Since mitochondrial dysfunction is a hallmark of ALS, we hypothesized that monitoring mitochondrial function could serve as a reliable strategy for early diagnosis and therapeutic monitoring of ALS. To address this, we synthesized and characterized 2 novel near-infrared fluorophores, ALS04 and ALS05, designed to target mitochondria and lysosomes. Their physicochemical properties, serum protein binding, fluorescence characteristics, photostability, and pharmacokinetics were systematically evaluated. We found that benzothiazole-based fluorophores exhibit excellent mitochondrial targeting, optimal optical properties, biocompatibility, and favorable biodistribution in vivo. Interestingly, ALS04 showed superior mitochondrial accumulation compared to ALS05, despite their similar physicochemical properties. This enhanced accumulation can be attributed to the lower molecular weight and higher lipophilicity of ALS04. Real-time fluorescence imaging revealed a substantial reduction in ALS04 signals in mitochondrial-rich tissues such as brown fat, highlighting its potential for monitoring mitochondrial dysfunction in early-stage ALS. Furthermore, the detection of ALS04 in the mouse brain suggests its ability to monitor blood-brain barrier hyperpermeability, another key feature of ALS pathology. These findings establish ALS04 as a promising noninvasive imaging tool for monitoring biomarkers associated with ALS progression. Its ability to detect early-stage pathophysiological changes in an ALS mouse model highlights its potential for advancing our understanding of ALS mechanisms and facilitating the identification of novel therapeutic targets.

References

  1. Exp Anim. 2015;64(2):147-53 [PMID: 25736480]
  2. Sci Adv. 2020 Sep 11;6(37): [PMID: 32917700]
  3. Brain Sci. 2021 Apr 27;11(5): [PMID: 33925493]
  4. Angew Chem Int Ed Engl. 2021 Jun 14;60(25):13847-13852 [PMID: 33857346]
  5. Genes Brain Behav. 2020 Feb;19(2):e12604 [PMID: 31412164]
  6. Front Chem. 2021 May 03;9:683220 [PMID: 34012953]
  7. Biomater Res. 2022 Oct 1;26(1):51 [PMID: 36183117]
  8. J Cereb Blood Flow Metab. 2023 May;43(5):642-654 [PMID: 36704819]
  9. Brain Res. 2007 Jul 9;1157:126-37 [PMID: 17512910]
  10. Chem Soc Rev. 2022 Oct 31;51(21):8957-9008 [PMID: 36226744]
  11. Int J Mol Sci. 2022 Aug 18;23(16): [PMID: 36012563]
  12. Nat Biomed Eng. 2020 Mar;4(3):245-246 [PMID: 32165731]
  13. Chem Rev. 2017 Aug 9;117(15):10043-10120 [PMID: 28654243]
  14. Cell Death Dis. 2023 Feb 15;14(2):122 [PMID: 36792609]
  15. Front Mol Neurosci. 2021 Dec 14;14:767041 [PMID: 34970118]
  16. Cell Chem Biol. 2021 Mar 18;28(3):320-337 [PMID: 33600764]
  17. Transl Lung Cancer Res. 2022 Nov;11(11):2175-2177 [PMID: 36519012]
  18. Eur J Neurol. 2020 Oct;27(10):1918-1929 [PMID: 32526057]
  19. Adv Mater. 2022 Feb;34(8):e2106500 [PMID: 34913533]
  20. Expert Rev Neurother. 2020 Sep;20(9):907-919 [PMID: 32583696]
  21. iScience. 2020 Apr 24;23(4):101006 [PMID: 32268281]
  22. J Med Chem. 2019 Nov 14;62(21):9824-9836 [PMID: 31603678]
  23. Theranostics. 2014 Apr 24;4(7):693-700 [PMID: 24883119]
  24. Br J Pharmacol. 2016 Aug;173(15):2319-34 [PMID: 27129075]
  25. Angew Chem Int Ed Engl. 2011 Jul 4;50(28):6258-63 [PMID: 21656624]
  26. Nat Struct Mol Biol. 2021 Feb;28(2):132-142 [PMID: 33398173]
  27. Front Physiol. 2021 Sep 16;12:712372 [PMID: 34603076]
  28. Clin Cancer Res. 2010 May 15;16(10):2833-44 [PMID: 20410058]
  29. Int J Mol Sci. 2022 Dec 03;23(23): [PMID: 36499600]
  30. Front Neurol. 2021 Mar 29;12:596006 [PMID: 33854469]
  31. Adv Healthc Mater. 2023 May;12(12):e2203134 [PMID: 36640372]
  32. J Microsc. 1993 Mar;169(3):375-382 [PMID: 33930978]

Word Cloud

Created with Highcharts 10.0.0ALSALS04mitochondrialtherapeuticmonitoringpropertiesdetectionprogressiondiagnosisdysfunctionnovelfluorophoresALS05physicochemicalfluorescenceaccumulationimagingpotentialearly-stagemouseabilityEarlyamyotrophiclateralsclerosiscriticalimprovingdiseasemanagementoutcomesHoweverclinicalheterogeneityvariabilitysymptomsoftenleaddelayedsuboptimalinterventionsSincehallmarkhypothesizedfunctionservereliablestrategyearlyaddresssynthesizedcharacterized2near-infrareddesignedtargetmitochondrialysosomesserumproteinbindingcharacteristicsphotostabilitypharmacokineticssystematicallyevaluatedfoundbenzothiazole-basedexhibitexcellenttargetingoptimalopticalbiocompatibilityfavorablebiodistributionin vivoInterestinglyshowedsuperiorcompareddespitesimilarenhancedcanattributedlowermolecularweighthigherlipophilicityReal-timerevealedsubstantialreductionsignalsmitochondrial-richtissuesbrownfathighlightingFurthermorebrainsuggestsmonitorblood-brainbarrierhyperpermeabilityanotherkeyfeaturepathologyfindingsestablishpromisingnoninvasivetoolbiomarkersassociateddetectpathophysiologicalchangesmodelhighlightsadvancingunderstandingmechanismsfacilitatingidentificationtargetsImage-GuidedMonitoringMitochondriaBlood-BrainBarrierDysfunctionAmyotrophicLateralSclerosisMice

Similar Articles

Cited By

No available data.