Theoretical study of the interaction of the potentially toxic contaminants Hg, CHHg, CHCHHg, and CHHg with a BO monolayer matrix.

Murielly Fernanda Ribeiro Bihain, Ellane Jacqueline Coelho Moreira Gomes, Anna Karla Dos Santos Pereira, Douglas Henrique Pereira
Author Information
  1. Murielly Fernanda Ribeiro Bihain: Department of Chemistry, Postgraduate Program in Chemistry, Federal University of Tocantins, Campus Gurupi-Badejós, P.O. Box 66, 77 402-970, Gurupi, Tocantins, Brazil.
  2. Ellane Jacqueline Coelho Moreira Gomes: Department of Chemistry, Postgraduate Program in Chemistry, Federal University of Tocantins, Campus Gurupi-Badejós, P.O. Box 66, 77 402-970, Gurupi, Tocantins, Brazil.
  3. Anna Karla Dos Santos Pereira: Department of Chemistry, Postgraduate Program in Chemistry, Federal University of Tocantins, Campus Gurupi-Badejós, P.O. Box 66, 77 402-970, Gurupi, Tocantins, Brazil.
  4. Douglas Henrique Pereira: Department of Chemistry, Postgraduate Program in Chemistry, Federal University of Tocantins, Campus Gurupi-Badejós, P.O. Box 66, 77 402-970, Gurupi, Tocantins, Brazil. douglasdhp@ita.br. ORCID

Abstract

CONTEXT: The mercury ion Hg, and its derivatives, organomercurials are high toxicity to humans due their ability to bioaccumulate. In view of these problems, studies of the interaction of these potentially toxic compounds with matrices allow verify if they can be detected, or help determine their adsorptive capacity. In this context, the work aims to theoretically evaluate the interaction between the BO matrix and the potentially toxic compounds Hg, CHHg, CHCHHg, and CHHg. The binding energy values showed that the interaction occurs effectively; being spontaneous and exothermic for all the interactions evaluated. The structural properties demonstrate that mercury interacts with the oxygen atoms of the BO matrix, with bond lengths ranging from 2.365 to 3.777 Å and that all organomercurials form hydrogen bonds. The topological parameters of quantum theory of atoms in molecules (QTAIM) categorized the nature of the interactions in electrostatic for HgO. The non-covalent interaction analyses presented a bluish color, between Hg and matrix oxygen indicating a strong attraction interaction and Van der Waals interactions ( green color) for the interaction of the organic group and BO. Thus, it can be confirmed that the study showed that the BO matrix is efficient for the interactions, enabling future experimental studies of the application of this matrix in adsorptive processes or for molecular filters.
METHODS: All calculations of density functional theory were performed using the program Gaussian 16 and the structures of BO matrix, Hg, CHHg, CHCHHg, and CHHg were generated using the GaussView program. The optimization and vibrational frequency calculations were performed using the functional ωB97XD and 6-31G(d,p) basis set for the H, B, C, and O atoms, while for the Hg atom the basis set used was CEP-31G with compact effective pseudopotential. All analyses were conducted at this level of theory. The quantum theory of atoms in molecules analysis were performed using AIMALL software. Non-covalent interaction calculations were carried out using Multiwfn software, and the structures were visualized using the visual molecular dynamics program.

Keywords

References

  1. Singh AD, Khanna K, Kour J, Dhiman S, Bhardwaj T, Devi K, Sharma N, Kumar P, Kapoor N, Sharma P, Arora P, Sharma A, Bhardwaj R (2023) Critical review on biogeochemical dynamics of mercury (Hg) and its abatement strategies. Chemosphere 319:137917. https://doi.org/10.1016/j.chemosphere.2023.137917 [DOI: 10.1016/j.chemosphere.2023.137917]
  2. Berlin M, Zalups RK, Fowler BA (2015) Chapter 46 - Mercury. In: Nordberg GF, Fowler BA, Nordberg M (eds) Handbook on the Toxicology of Metals, 4th edn. Academic Press, San Diego, pp 1013–1075 [DOI: 10.1016/B978-0-444-59453-2.00046-9]
  3. Mcguigan MA (2012) 21 - Chronic poisoning: trace metals and others. In: Goldman L, Schafer AI (eds) Goldman’s Cecil Medicine (Twenty, 4th edn. Saunders, Philadelphia, W.B, pp 88–95 [DOI: 10.1016/B978-1-4377-1604-7.00021-X]
  4. Teng D, Mao K, Ali W, Xu G, Huang G, Niazi NK, Feng X, Zhang H (2020) Describing the toxicity and sources and the remediation technologies for mercury-contaminated soil. RSC Adv 10:23221–23232. https://doi.org/10.1039/D0RA01507E [DOI: 10.1039/D0RA01507E]
  5. Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47:4967–4983. https://doi.org/10.1021/es305071v [DOI: 10.1021/es305071v]
  6. Kumar A, Kumar V, Bakshi P, Parihar RD, Radziemska M, Kumar R (2024) Mercury in the natural environment: biogeochemical cycles and associated health risks. J Geochem Explor 267:107594. https://doi.org/10.1016/j.gexplo.2024.107594 [DOI: 10.1016/j.gexplo.2024.107594]
  7. Teng H, Altaf AR (2022) Elemental mercury (Hg0) emission, hazards, and control: a brief review. J Hazard Mater Adv 5:100049. https://doi.org/10.1016/j.hazadv.2022.100049 [DOI: 10.1016/j.hazadv.2022.100049]
  8. Geri A, Zineddu S, Massai L, Ronga L, Lobinski R, Gailer J, Messori L (2024) Mercury binding to proteins disclosed by ESI MS experiments: the case of three organomercurials. J Inorg Biochem 252:112479. https://doi.org/10.1016/j.jinorgbio.2024.112479 [DOI: 10.1016/j.jinorgbio.2024.112479]
  9. Wu Y, Liu G, Liu X, Mao Y, Guo Y, Liu Y, Zhu L, Yin Y, Cai Y, Jiang G (2024) Towards a better understanding of ethylmercury in the environment: addressing propylation derivatization artifact and verifying its occurrence in Chinese wetlands. Water Res 263:122167. https://doi.org/10.1016/j.watres.2024.122167 [DOI: 10.1016/j.watres.2024.122167]
  10. Bihain MFR, Gomes EJCM, Macedo VS, Cavallini GS, Pereira DH (2022) Theoretical insights into the possibility of removing CH3Hg+ using different adsorptive matrices: g-C3N4, cellulose xanthate, and vanillin-derived modified monomer. J Mol Liq 361:119691. https://doi.org/10.1016/j.molliq.2022.119691 [DOI: 10.1016/j.molliq.2022.119691]
  11. Kern JK, Geier DA, Homme KG, Geier MR (2020) Examining the evidence that ethylmercury crosses the blood-brain barrier. Environ Toxicol Pharmacol 74:103312. https://doi.org/10.1016/j.etap.2019.103312 [DOI: 10.1016/j.etap.2019.103312]
  12. Ramos A, dos Santos MM, de Macedo GT, Wildner G, Prestes AS, Masuda CA, Dalla Corte CL, da Rocha JBT, Barbosa NV (2020) Methyl and Ethylmercury elicit oxidative stress and unbalance the antioxidant system in Saccharomyces cerevisiae. Chem Biol Interact 315:108867. https://doi.org/10.1016/j.cbi.2019.108867 [DOI: 10.1016/j.cbi.2019.108867]
  13. Beckers F, Awad YM, Beiyuan J, Abrigata J, Mothes S, Tsang DCW, Ok YS, Rinklebe J (2019) Impact of biochar on mobilization, methylation, and ethylation of mercury under dynamic redox conditions in a contaminated floodplain soil. Environ Int 127:276–290. https://doi.org/10.1016/j.envint.2019.03.040 [DOI: 10.1016/j.envint.2019.03.040]
  14. Weber LP (2024) Phenylmercuric acetate. In: Wexler P (ed) Encyclopedia of Toxicology, 4th edn. Academic Press, Oxford, pp 549–552 [DOI: 10.1016/B978-0-12-824315-2.01074-5]
  15. Wang L, Hou D, Cao Y, Ok YS, Tack FMG, Rinklebe J, O’Connor D (2020) Remediation of mercury contaminated soil, water, and air: a review of emerging materials and innovative technologies. Environ Int 134:105281. https://doi.org/10.1016/j.envint.2019.105281 [DOI: 10.1016/j.envint.2019.105281]
  16. Basem A, Jasim DJ, Majdi HS, Mohammed RM, Ahmed M, Al-Rubaye AH, Kianfar E (2024) Adsorption of heavy metals from wastewater by chitosan: a review. Results Eng 23:102404. https://doi.org/10.1016/j.rineng.2024.102404 [DOI: 10.1016/j.rineng.2024.102404]
  17. Lu S, Yao X, Cheng Y, Zhao L (2024) Recent developments and challenges for volatile organic compounds control by the synergistic of adsorption and photocatalysis. Appl Catal O Open 193:206975. https://doi.org/10.1016/j.apcato.2024.206975 [DOI: 10.1016/j.apcato.2024.206975]
  18. Huang X, Zhao M, Xu M et al (2024) Study on adsorption properties and DFT calculations using ethylenediamine-functionalized Zr-based MOF as adsorbent for Hg(II). J Mol Struct 1308:137972. https://doi.org/10.1016/j.molstruc.2024.137972 [DOI: 10.1016/j.molstruc.2024.137972]
  19. Lan Y, Xu S, Fu Y et al (2025) The selective adsorption mechanism of heteroatom-doped carbon nanotubes for heavy metals in wastewater. A DFT study. Diam Relat Mater 152:111875. https://doi.org/10.1016/j.diamond.2024.111875 [DOI: 10.1016/j.diamond.2024.111875]
  20. Sun Y, Sun Y, Li Z et al (2024) Mercury adsorption study and DFT calculations of sulfur-containing biomass composites prepared by inverse vulcanization. Int J Biol Macromol 281:135868. https://doi.org/10.1016/j.ijbiomac.2024.135868 [DOI: 10.1016/j.ijbiomac.2024.135868]
  21. Hua B, Liu D, Feng Y et al (2024) Experimental and DFT studies of mercury adsorption and oxidation on CuCo2O4(110) surface. Surf Interfac 54:105242. https://doi.org/10.1016/j.surfin.2024.105242 [DOI: 10.1016/j.surfin.2024.105242]
  22. Chen J, Zeng W, Huang H, Lou X, Chen S, Ye C, Huang Z, Qiu T (2025) Tunable porosity and Hg (II) adsorption performance in dual heteroatom functionalized conjugated micro-mesoporous poly (aniline) s. Separat Purificat Technol 7:131997. https://doi.org/10.1016/j.seppur.2025.131997 [DOI: 10.1016/j.seppur.2025.131997]
  23. Alshandoudi LM, Hassan AF, Al-Azri AY, Al Rushaidi BM (2025) Efficient adsorption of mercuric ions from an aqueous medium by novel chitosan-coated silica nanoparticles based on Oman’s white sand. Next Nanotechnol 7:100130. https://doi.org/10.1016/j.nxnano.2024.100130 [DOI: 10.1016/j.nxnano.2024.100130]
  24. Xiong C, Wang H, Deng L et al (2024) Novel triazine-based sulfur-containing polyamides: preparation, adsorption efficiency and mechanism for mercury ions. Eur Polymer J 202:112588. https://doi.org/10.1016/j.eurpolymj.2023.112588 [DOI: 10.1016/j.eurpolymj.2023.112588]
  25. Liu Y, Wang Z, Jiang D et al (2025) Highly efficient and selective adsorption of Hg(II) from water by N, S-functionalized fly ash-based tobermorite. Sep Purif Technol 361:131285. https://doi.org/10.1016/j.seppur.2024.131285 [DOI: 10.1016/j.seppur.2024.131285]
  26. Rahimi R, Solimannejad M, Ehsanfar Z (2021) First-principles studies on two-dimensional B3O3 adsorbent as a potential drug delivery platform for TEPA anticancer drug. J Mol Model 27:347. https://doi.org/10.1007/s00894-021-04930-x [DOI: 10.1007/s00894-021-04930-x]
  27. Ullah S, Denis PA, Sato F (2019) Theoretical investigation of various aspects of two dimensional holey boroxine, B3O3. RSC Adv 9:37526–37536. https://doi.org/10.1039/C9RA07338H [DOI: 10.1039/C9RA07338H]
  28. Lin S, Gu J, Zhang H, Wang Y, Chen Z (2018) Porous hexagonal boron oxide monolayer with robust wide band gap: a computational study. FlatChem 9:27–32. https://doi.org/10.1016/j.flatc.2018.05.002 [DOI: 10.1016/j.flatc.2018.05.002]
  29. Naeem YA, Jabbar AH, Lateef MA, Omran AA, Karim MM, Abdulwahid AS, Kadhim MM (2024) Development of B3O3 monolayer as a highly sensitive sensor for detection of acetone molecule: A DFT analysis. Sustain Chem Environ 5:100079. https://doi.org/10.1016/j.scenv.2024.100079 [DOI: 10.1016/j.scenv.2024.100079]
  30. Rahman NU, Khan AA, Ullah R, Ahmad R, Ahmad I (2022) Selective sensing of NH3 and CH2O molecules by novel 2D porous hexagonal boron oxide (B3O3) monolayer: A DFT approach. Surf Interfaces 29:101767. https://doi.org/10.1016/j.surfin.2022.101767 [DOI: 10.1016/j.surfin.2022.101767]
  31. Rahimi R, Solimannejad M (2022) B3O3 monolayer with dual application in sensing of COVID-19 biomarkers and drug delivery for treatment purposes: a periodic DFT study. J Mol Liq 354:118855. https://doi.org/10.1016/j.molliq.2022.118855 [DOI: 10.1016/j.molliq.2022.118855]
  32. Salba AF, Raza Ayub A, Mubeen Arshed S, Taj A, Youssef Nabat K, Hamid H, Iqbal J (2024) A DFT-based quantum analysis of optimizing B3O3 as a Melphalan nanocarrier for cancer therapy. Comput Theor Chem 1236:114582. https://doi.org/10.1016/j.comptc.2024.114582 [DOI: 10.1016/j.comptc.2024.114582]
  33. Dennington R, Keith TA, Millam JM (2009) GaussView Version 5
  34. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE; Robb M A, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16 Revision C.02
  35. Morgon NH, Coutinho KR (2007) Métodos de química teórica e modelagem molecular. Editora Livraria da Física. São Paulo
  36. Heerdt G, Pereira DH, Custodio R, Morgon NH (2015) W1CEP theory for computational thermochemistry. Comput Theor Chem 1067:84–92. https://doi.org/10.1016/j.comptc.2015.05.011 [DOI: 10.1016/j.comptc.2015.05.011]
  37. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620. https://doi.org/10.1039/B810189B [DOI: 10.1039/B810189B]
  38. Chai J-D, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys 128:084106. https://doi.org/10.1063/1.2834918 [DOI: 10.1063/1.2834918]
  39. Petersson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, Mantzaris J (1988) A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J Chem Phys 89:2193–2218. https://doi.org/10.1063/1.455064 [DOI: 10.1063/1.455064]
  40. Petersson GA, Al-Laham MA (1991) A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J Chem Phys 94:6081–6090. https://doi.org/10.1063/1.460447 [DOI: 10.1063/1.460447]
  41. Stevens WJ, Basch H, Krauss M (1984) Compact effective potentials and efficient shared-exponent basis sets for the first- and second-row atoms. J Chem Phys 81:6026–6033. https://doi.org/10.1063/1.447604 [DOI: 10.1063/1.447604]
  42. Cundari TR, Stevens WJ (1993) Effective core potential methods for the lanthanides. J Chem Phys 98:5555–5565. https://doi.org/10.1063/1.464902 [DOI: 10.1063/1.464902]
  43. Stevens WJ, Krauss M, Basch H, Jasien PG (1992) Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms. Can J Chem 70:612–630. https://doi.org/10.1139/v92-085 [DOI: 10.1139/v92-085]
  44. Santos TJ, Paggiaro J, Cabral Silva Pimentel HD et al (2022) Computational study of the interaction of heavy metal ions, Cd(II), Hg(II), and Pb(II) on lignin matrices. J Mol Graph Model 111:108080. https://doi.org/10.1016/j.jmgm.2021.108080 [DOI: 10.1016/j.jmgm.2021.108080]
  45. Qadir KW, Mohammadi MD, Abdullah HY (2025) Modelling gas adsorption onto Al12(Zn)N12 surfaces: a theoretical study of CH4, CO, CO2, H2O, N2, NH3, NO, NO2, O2, and SO2 interactions. Comput Theor Chem 1244:115063. https://doi.org/10.1016/j.comptc.2024.115063 [DOI: 10.1016/j.comptc.2024.115063]
  46. Kaviani S, Piyanzina I, Nedopekin OV, Tayurskii DA (2023) First-principles outlook of two-dimensional B3O3 monolayer as an anode material for non-lithium ion (K+, Ca2+, and Al3+) batteries. Comput Theor Chem 1228:114246. https://doi.org/10.1016/j.comptc.2023.114246 [DOI: 10.1016/j.comptc.2023.114246]
  47. Rahimi R, Solimannejad M (2023) A periodic DFT study on superior adsorption of an azo dye over B3O3 monolayer. Colloid Nanosci J 1(1):26–38. https://doi.org/10.52547/CNJ.1.1.26 [DOI: 10.52547/CNJ.1.1.26]
  48. Rahimi R, Solimannejad M (2023) In silico study of B3O3 nanosheet as a disposable platform for sensing and delivery of carmustine anticancer drug. J Drug Deliver Sci Technol 87:104828. https://doi.org/10.1016/j.jddst.2023.104828 [DOI: 10.1016/j.jddst.2023.104828]
  49. Bakó I, Mayer I, Hamza A, Pusztai L (2019) Two- and three-body, and relaxation energy terms in water clusters: application of the hierarchical BSSE corrected decomposition scheme. J Mol Liq 285:171–177. https://doi.org/10.1016/j.molliq.2019.04.088 [DOI: 10.1016/j.molliq.2019.04.088]
  50. Shuttleworth IG (2015) Strategies for reducing basis set superposition error (BSSE) in O/AU and O/Ni. J Phys Chem Solids 86:19–26. https://doi.org/10.1016/j.jpcs.2015.06.016 [DOI: 10.1016/j.jpcs.2015.06.016]
  51. Hamza A, Vibok A, Halasz GJ, Mayer I (2000) BSSE-free SCF theories: a comment. J Mol Struct 501–502:427–434. https://doi.org/10.1016/S0166-1280(99)00454-6 [DOI: 10.1016/S0166-1280(99)00454-6]
  52. Bader RFW, Essén H (1984) The characterization of atomic interactions. J Chem Phys 80:1943–1960. https://doi.org/10.1063/1.446956 [DOI: 10.1063/1.446956]
  53. Bader RFW (1990) Atoms in molecules: a quantum theory, 1st edn. Oxford Univ. Press, Oxford [DOI: 10.1093/oso/9780198551683.001.0001]
  54. Espinosa E, Molins E, Lecomte C (1998) Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem Phys Lett 285:170–173. https://doi.org/10.1016/S0009-2614(98)00036-0 [DOI: 10.1016/S0009-2614(98)00036-0]
  55. Kavitha N, Alivelu M (2021) Investigation of Structures, QTAIM, RDG, ADMET, and docking properties of SASC compound using experimental and theoretical approach. Comput Theor Chem 1201:113287. https://doi.org/10.1016/j.comptc.2021.113287 [DOI: 10.1016/j.comptc.2021.113287]
  56. Cruz ÁB, Francisco de Carvalho R, Silva TS, Silva TS, Sarmento RA, Cavalini GS, Pereira DH (2022) Adsorptive capacity of a g-C3N4 matrix for thiamethoxam removal: A DFT study. Comput Theor Chem 1215:113816. https://doi.org/10.1016/j.comptc.2022.113816 [DOI: 10.1016/j.comptc.2022.113816]
  57. Todd A, Keith T (2017) AIMAll. Gristmill Software, Overland Park KS, USA
  58. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885 [DOI: 10.1002/jcc.22885]
  59. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5 [DOI: 10.1016/0263-7855(96)00018-5]
  60. Miranda TG, Ciribelli NN, Bihain MFR, Pereira AKS, Cavallini GS, Pereira DH (2024) Interactions between DNA and the acridine intercalator: a computational study. Comput Biol Chem 109:108029. https://doi.org/10.1016/j.compbiolchem.2024.108029 [DOI: 10.1016/j.compbiolchem.2024.108029]
  61. Hajji M, Abad N, Habib MA, Elmgirhi SMH, Guerfel T (2021) Computational chemistry methods for modelling non-covalent interactions and chemical reactivity—an overview. J Indian Chem Soc 98:100208. https://doi.org/10.1016/j.jics.2021.100208 [DOI: 10.1016/j.jics.2021.100208]
  62. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Weitao Y (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506. https://doi.org/10.1021/ja100936w [DOI: 10.1021/ja100936w]
  63. Jumabaev A, Holikulov U, Hushvaktov H, Issaoui N, Absanov A (2023) Intermolecular interactions in ethanol solution of OABA: Raman, FTIR, DFT, M062X, MEP, NBO, FMO, AIM, NCI. RDG Analysis J Mol Liq 377:121552. https://doi.org/10.1016/j.molliq.2023.121552 [DOI: 10.1016/j.molliq.2023.121552]
  64. Hosseinzadeh E, Foroumadi A, Firoozpour L (2023) A DFT study on the transition metal doped BN and AlN nanocages as a drug delivery vehicle for the cladribine drug. J Mol Liq 374:121262. https://doi.org/10.1016/j.molliq.2023.121262 [DOI: 10.1016/j.molliq.2023.121262]
  65. Yang H, Liu Y, Gao C, Meng L, Liu Y, Tang X, Ye H (2019) Adsorption behavior of nucleobases on doped MoS2 monolayer: a DFT study. J Phys Chem C 123:30949–30957. https://doi.org/10.1021/acs.jpcc.9b08018 [DOI: 10.1021/acs.jpcc.9b08018]

Word Cloud

Created with Highcharts 10.0.0interactionmatrixHgBOCHHgusinginteractionsatomstheorypotentiallytoxicCHCHHgcalculationsperformedprogrammercuryorganomercurialsstudiescompoundscanadsorptiveshowedoxygenquantummoleculesanalysescolorstudymolecularfunctionalstructuresbasissetsoftwareCONTEXT:ionderivativeshightoxicityhumansdueabilitybioaccumulateviewproblemsmatricesallowverifydetectedhelpdeterminecapacitycontextworkaimstheoreticallyevaluatebindingenergyvaluesoccurseffectivelyspontaneousexothermicevaluatedstructuralpropertiesdemonstrateinteractsbondlengthsranging23653777 ÅformhydrogenbondstopologicalparametersQTAIMcategorizednatureelectrostaticHgOnon-covalentpresentedbluishindicatingstrongattractionVanderWaalsgreenorganicgroupThusconfirmedefficientenablingfutureexperimentalapplicationprocessesfiltersMETHODS:densityGaussian16generatedGaussViewoptimizationvibrationalfrequencyωB97XD6-31GdpHBCOatomusedCEP-31GcompacteffectivepseudopotentialconductedlevelanalysisAIMALLNon-covalentcarriedMultiwfnvisualizedvisualdynamicsTheoreticalcontaminantsmonolayerB3O3InteractionsOrganomercurialsSimulations

Similar Articles

Cited By