Simulation study on the influence of typical wave profiles on HMX with nanovoids hotspot temperature and decomposition reaction.

Lizhen Chang, Wenkai Yao, Yin Yu, Nina Ge
Author Information
  1. Lizhen Chang: State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, P. R. China.
  2. Wenkai Yao: Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, 621900, China.
  3. Yin Yu: Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, 621900, China. yuyun86@126.com.
  4. Nina Ge: State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, P. R. China. genina911@163.com.

Abstract

CONTEXT: The formation of hot spots and chemical decomposition of explosives under shock loading are crucial for understanding the initiation of heterogeneous explosives. In this study, molecular dynamics simulations were employed to investigate the collapse of nanovoids, hotspot formation, and decomposition reactions of HMX under four typical stress wave loadings: long-pulse, short-pulse, triangular wave, and ramp wave. Different loading modes lead to varying critical transition velocities at which void collapse shifts from uniform to jetting collapse. For long-pulse loading, short-pulse and ramp wave loadings, and triangular wave loading were about 1.75 km/s, 2.25 km/s, 2 km/s and 2.5 km/s, respectively. Furthermore, it was found that under the uniform collapse mode, the hot spot temperature remains below 2000 K, and the initial decomposition pathway of HMX primarily involved the breaking of the N-NO��� bond. In the jetting collapse mode, hydrogen transfer and the formation of HONO were observed. These findings contribute to a better understanding of the relationship between shock loading modes and void collapse patterns in explosives, revealing the initial reaction pathways of HMX under different collapse modes, and providing theoretical guidance for experimental investigations, to provide a theoretical basis for developing a new ignition model.
METHODS: Based on the ReaxFF-MD method, Lammps software was used to simulate the shock process of the HMX system with circular holes, and the reaction force field files containing C, H, O, and N elements were used. The post-processing of the results was implemented using OVITO and self-programmed Python scripts.

Keywords

References

  1. Zhong K, Bu R, Jiao F, Liu G, Zhang C (2022) Chem Eng J 429:132310 [DOI: 10.1016/j.cej.2021.132310]
  2. Bowden FP, Singh K (1953) Nature 172:378���380 [DOI: 10.1038/172378a0]
  3. Nguyen PCH, Nguyen YT, Choi, Joseph BS, Pradeep KU, Baek HS, Stephen S (2023) Sci Adv 9:1���14
  4. Field JE (1992) Acc Chem Res 25:189���496 [DOI: 10.1021/ar00023a002]
  5. Shan TR, Wixom RR, Thompson AP (2016) Phys Rev B 94:054308 [DOI: 10.1103/PhysRevB.94.054308]
  6. Rai NK, Udaykumar HS (2019) Phys Fluids 31:016103 [DOI: 10.1063/1.5067270]
  7. Field JE, Swallowe GM, Heavens SN (1982) Proc R Soc 382:231���244
  8. Yu C, Pandolfi A, Ortiz M, Coker D, Rosakis AJ (2002) Int J Solids Struct 39:6135���6157 [DOI: 10.1016/S0020-7683(02)00466-3]
  9. Kroonblawd M, Fried LE (2020) Phys Rev Lett 124:206002 [PMID: 32501094]
  10. Kang J, Butler PB, Baer MR (1992) Combust Flame 89:117���139 [DOI: 10.1016/0010-2180(92)90023-I]
  11. Coffey CS (1981) Phys Rev B 24:6984���6990 [DOI: 10.1103/PhysRevB.24.6984]
  12. Coffey CS (1987) J Phys Colloq 48:253���263 [DOI: 10.1051/jphyscol]
  13. Chaudhri MM, Field JE (1974) P Roy Soc A-math Phy 340:113���128
  14. Shi Brenner DW (2018) J Phys Chem C 112:6263���6270
  15. Swantek AB, Austin JM (2010) J Fluid Mech 649:399���427 [DOI: 10.1017/S0022112009993545]
  16. Das P, Zhao P, Perera D, Sewell T, Udaykumar HS (2021) J Appl Phys 130:085901 [DOI: 10.1063/5.0056560]
  17. Zhao P, Lee S, Sewell T, Udaykumar HS (2020) Propellants, Explos, Pyrotech 45:1���28 [DOI: 10.1002/prep.202080101]
  18. Li C, Sakano MN, Strachan A (2021) J Appl Phys 130:055902 [DOI: 10.1063/5.0055998]
  19. Field JE, Bourne NK, Walley SM, Sharma J, Beard BC (1992) Acc Chem Res 339:269���283
  20. Duarte CA, Hamed A, Drake JD, Sorensen CJ, Son SF, Chen WW (2020) Prop Explos Pyrotech 45:1���12 [DOI: 10.1002/prep.201900251]
  21. Springer HK, Tarver CM, Bastea S (2017) AIP Conf Proc 1793:080002 [DOI: 10.1063/1.4971608]
  22. Tran L, Udaykumar HS (2006) J Propul Power 22:947���958 [DOI: 10.2514/1.13146]
  23. Tran L, Udaykumar HS (2006) J Propul Power 22:959���974 [DOI: 10.2514/1.13147]
  24. Fu H, Zhao F, Tan D, Wang W, Shang H (2011) Chin J High Pressure Phys 25:8���14
  25. Shang HL, Zhao F, Wang WQ, Fu H (2010) Explos Shock Waves 30:131���137
  26. Duarte CA, Li C, Hamilton BW, Strachan A, Koslowski M (2021) J Appl Phys 129:015904 [DOI: 10.1063/5.0025050]
  27. Eason RM, Sewell TD (2015) J Dyn Behav Mater 1:423���438 [DOI: 10.1007/s40870-015-0037-z]
  28. Zhou T, Lou J, Zhang Y, Song H, Huang F (2016) Phys Chem Chem Phys 18:17627���17645 [PMID: 27307079]
  29. Zhou T, Lou J (2024) Chin J Energ Mater 32:65���75
  30. Li C, Strachan A (2022) J Appl Phys 132:065901 [DOI: 10.1063/5.0098808]
  31. Herring SD, Germann TC, Granbech-jensen N (2010) Phys Rev B 82:214108 [DOI: 10.1103/PhysRevB.82.214108]
  32. Springer HK, Bastea S, Nichols AL III, Tarver CM, Reaugh JE (2018) Propell Explos Pyrot 43:805���817 [DOI: 10.1002/prep.201800082]
  33. Hamilton BW, Kroonblawd MP, Strachan A (2022) J Phys Chem C 126:3743���3755 [DOI: 10.1021/acs.jpcc.1c10226]
  34. Thompson AP, Aktulga HM, Berger R, Bolintineanu DS, Brown WM, Crozier PS, Plimpton SJ (2022) Comput Phys Commun 271:108171 [DOI: 10.1016/j.cpc.2021.108171]
  35. Zhong K, Liu J, Wang L, Zhang C (2018) Chin J Energ Mater 26:11���20
  36. Van Duim ACT, Dasgupta S, Lorant F, Goddard WA (2001) J Phys Chem A 105:9396���9409 [DOI: 10.1021/jp004368u]
  37. Chenoweth K, Cheung S, Van Duim ACT, Goddard WA, Kober EM (2005) J Am Chem Soc 127:7192���7202 [PMID: 15884961]
  38. Liu LC, Liu Y, Zybin SV, Sun H, Goddard WA III (2011) J Phys Chem A 115(40):11016���11022 [PMID: 21888351]
  39. Liu H, Li Q, He YH (2013) Acta Phys Sin 62:208202 [DOI: 10.7498/aps.62.208202]
  40. Long Y, Chen J (2015) J Phys Chem A 119:073���082 [DOI: 10.1021/jp509144v]
  41. Xiao Y, Chen L, Yang K, Geng D, Wu J (2021) Sci Rep 11:10559 [PMID: 34006908]
  42. Yang K, Chen L, Liu D, Lu J, Xiao Y, Geng D, Wu J (2020) J Phys Chem C 124:10367���10375 [DOI: 10.1021/acs.jpcc.0c01840]
  43. Zhang K, Chen D, Lu J, Wu J (2020) Phys Chem Chem Phys 22:13248���13260 [PMID: 32500901]
  44. Zhu S, Zhu W (2020) J Nanopart Res 22:362 [DOI: 10.1007/s11051-020-05099-9]
  45. Yoo CS, Cynn H (1999) J Chem Phys 111:10229���10235 [DOI: 10.1063/1.480341]
  46. Dick JJ, Hooks DE, Menikoff R, Martinez AR (2004) J Appl Phys 96:374���379 [DOI: 10.1063/1.1757026]
  47. Li C, Hamilton BW, Strachan A (2020) J Appl Phys 127:175902 [DOI: 10.1063/5.0005872]
  48. Wood MA, Kittell DE, Yarrington CD, Thompson AP (2018) Phys Rev B 97:014109 [DOI: 10.1103/PhysRevB.97.014109]

Word Cloud

Created with Highcharts 10.0.0collapseloadingHMXwavedecompositionformationexplosivesshockmodesreactionhotunderstandingstudynanovoidshotspottypicallong-pulseshort-pulsetriangularrampvoiduniformjetting2modetemperatureinitialtheoreticalusedCONTEXT:spotschemicalcrucialinitiationheterogeneousmoleculardynamicssimulationsemployedinvestigatereactionsfourstressloadings:Differentleadvaryingcriticaltransitionvelocitiesshiftsloadings175 km/s25 km/s2 km/s5 km/srespectivelyFurthermorefoundspotremains2000 KpathwayprimarilyinvolvedbreakingN-NO���bondhydrogentransferHONOobservedfindingscontributebetterrelationshippatternsrevealingpathwaysdifferentprovidingguidanceexperimentalinvestigationsprovidebasisdevelopingnewignitionmodelMETHODS:BasedReaxFF-MDmethodLammpssoftwaresimulateprocesssystemcircularholesforcefieldfilescontainingCHONelementspost-processingresultsimplementedusingOVITOself-programmedPythonscriptsSimulationinfluenceprofilesHotspotInitialShockVoid

Similar Articles

Cited By

No available data.