From postsynaptic neurons to astrocytes: the link between glutamate metabolism, Alzheimer's disease and Parkinson's disease.

Fu-Wang Liu, Xue-Rui Zhang, Yi-Fan Cong, Yan-Man Liu, Han-Ting Zhang, Xue-Qin Hou
Author Information
  1. Fu-Wang Liu: School of Pharmaceutical Sciences & Institute of Materia Medica, 518873 Shandong First Medical University & Shandong Academy of Medical Sciences , Jinan, Shandong, 250117, P.R. China. ORCID
  2. Xue-Rui Zhang: School of Pharmaceutical Sciences & Institute of Materia Medica, 518873 Shandong First Medical University & Shandong Academy of Medical Sciences , Jinan, Shandong, 250117, P.R. China. ORCID
  3. Yi-Fan Cong: Department of Pharmacy, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, P.R. China. ORCID
  4. Yan-Man Liu: School of Pharmaceutical Sciences & Institute of Materia Medica, 518873 Shandong First Medical University & Shandong Academy of Medical Sciences , Jinan, Shandong, 250117, P.R. China. ORCID
  5. Han-Ting Zhang: Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong, 266073, P.R. China. ORCID
  6. Xue-Qin Hou: School of Pharmaceutical Sciences & Institute of Materia Medica, 518873 Shandong First Medical University & Shandong Academy of Medical Sciences , Jinan, Shandong, 250117, P.R. China. ORCID

Abstract

glutamate is not only the main excitatory neurotransmitter of the human central nervous system, but also a potent neurotoxin. Therefore, maintaining low-dose, non-toxic extracellular glutamate concentrations between synapses to ensure the reliability of synaptic transmission is essential for maintaining normal physiological functions of neurons. More and more studies have confirmed that the specific pathogenesis of central nervous system diseases (such as Alzheimer's disease) caused by neuronal damage or death due to abnormal inter-synaptic glutamate concentration may be related to the abnormal function of excitatory amino acid transporter proteins and glutamine synthetase on astrocytes, and that the abnormal expression and function of the above two proteins may be related to the transcription, translation, and even modification of both by the process of transcription, translation, and even modification of astrocytes. oxidative stress, and inflammatory responses occurring in astrocytes during their transcription, translation and even modification. Therefore, in this review, we mainly discuss the relationship between glutamate metabolism (from postsynaptic neurons to astrocytes), Alzheimer's disease and Parkinson's disease in recent years.

Keywords

References

  1. Abdul, H.M., Sama, M.A., Furman, J.L., Mathis, D.M., Beckett, T.L., Weidner, A.M., Patel, E.S., Baig, I., Murphy, M.P., LeVine, H.3rd, et al.. (2009). Cognitive decline in Alzheimer’s disease is associated with selective changes in calcineurin/NFAT signaling. J. Neurosci. 29: 12957–12969, https://doi.org/10.1523/jneurosci.1064-09.2009 . [DOI: 10.1523/jneurosci.1064-09.2009]
  2. Ahmed, I., Bose, S.K., Pavese, N., Ramlackhansingh, A., Turkheimer, F., Hotton, G., Hammers, A., and Brooks, D.J. (2011). Glutamate NMDA receptor dysregulation in Parkinson’s disease with dyskinesias. Brain 134: 979–986, https://doi.org/10.1093/brain/awr028 . [DOI: 10.1093/brain/awr028]
  3. Amitai, N. and Markou, A. (2010). Effects of metabotropic glutamate receptor 2/3 agonism and antagonism on schizophrenia-like cognitive deficits induced by phencyclidine in rats. Eur. J. Pharmacol. 639: 67–80, https://doi.org/10.1016/j.ejphar.2009.12.040 . [DOI: 10.1016/j.ejphar.2009.12.040]
  4. Assous, M., Had-Aissouni, L., Gubellini, P., Melon, C., Nafia, I., Salin, P., Kerkerian-Le-Goff, L., and Kachidian, P. (2014). Progressive Parkinsonism by acute dysfunction of excitatory amino acid transporters in the rat substantia nigra. Neurobiol. Dis. 65: 69–81, https://doi.org/10.1016/j.nbd.2014.01.011 . [DOI: 10.1016/j.nbd.2014.01.011]
  5. Back, M.K., Ruggieri, S., Jacobi, E., and von Engelhardt, J. (2021). Amyloid beta-mediated changes in synaptic function and spine number of neocortical neurons depend on NMDA receptors. Int. J. Mol. Sci. 22: 6298, https://doi.org/10.3390/ijms22126298 . [DOI: 10.3390/ijms22126298]
  6. Bao, X.Q., Kong, X.C., Kong, L.B., Wu, L.Y., Sun, H., and Zhang, D. (2014). Squamosamide derivative FLZ protected dopaminergic neuron by activating Akt signaling pathway in 6-OHDA-induced in vivo and in vitro Parkinson’s disease models. Brain Res. 1547: 49–57, https://doi.org/10.1016/j.brainres.2013.12.026 . [DOI: 10.1016/j.brainres.2013.12.026]
  7. Barthet, G., Moreira-de-Sá, A., Zhang, P., Deforges, S., Castanheira, J., Gorlewicz, A., and Mulle, C. (2022). Presenilin and APP regulate synaptic kainate receptors. J. Neurosci. 42: 9253–9262, https://doi.org/10.1523/jneurosci.0297-22.2022 . [DOI: 10.1523/jneurosci.0297-22.2022]
  8. Bauer, D., Haroutunian, V., Meador-Woodruff, J.H., and McCullumsmith, R.E. (2010). Abnormal glycosylation of EAAT1 and EAAT2 in prefrontal cortex of elderly patients with schizophrenia. Schizophr Res 117: 92–98, https://doi.org/10.1016/j.schres.2009.07.025 . [DOI: 10.1016/j.schres.2009.07.025]
  9. Brocke, K.S., Staufner, C., Luksch, H., Geiger, K.D., Stepulak, A., Marzahn, J., Schackert, G., Temme, A., and Ikonomidou, C. (2010). Glutamate receptors in pediatric tumors of the central nervous system. Cancer Biol. Ther. 9: 455–468, https://doi.org/10.4161/cbt.9.6.10898 . [DOI: 10.4161/cbt.9.6.10898]
  10. Butterfield, D.A., Poon, H.F., St Clair, D., Keller, J.N., Pierce, W.M., Klein, J.B., and Markesbery, W.R. (2006). Redox proteomics identification of oxidatively modified hippocampal proteins in mild cognitive impairment: insights into the development of Alzheimer’s disease. Neurobiol. Dis. 22: 223–232, https://doi.org/10.1016/j.nbd.2005.11.002 . [DOI: 10.1016/j.nbd.2005.11.002]
  11. Campolo, N., Mastrogiovanni, M., Mariotti, M., Issoglio, F.M., Estrin, D., Hägglund, P., Grune, T., Davies, M.J., Bartesaghi, S., and Radi, R. (2023). Multiple oxidative post-translational modifications of human glutamine synthetase mediate peroxynitrite-dependent enzyme inactivation and aggregation. J. Biol. Chem. 299: 102941, https://doi.org/10.1016/j.jbc.2023.102941 . [DOI: 10.1016/j.jbc.2023.102941]
  12. Chakrabarti, R. (1998). Transcriptional regulation of the rat glutamine synthetase gene by tumor necrosis factor-alpha. Eur. J. Biochem. 254: 70–74, https://doi.org/10.1046/j.1432-1327.1998.2540070.x . [DOI: 10.1046/j.1432-1327.1998.2540070.x]
  13. Chen, T.S., Huang, T.H., Lai, M.C., and Huang, C.W. (2023). The role of glutamate receptors in epilepsy. Biomedicines 11: 783, https://doi.org/10.3390/biomedicines11030783 . [DOI: 10.3390/biomedicines11030783]
  14. Chen, T.Y., Chen, Y.R., Hsu, M.L., Liao, Y.T., Wu, C.H., Yao, C.A., Yang, W.C., Lin, W., and Lin, Y. (2024). Homoplantaginin antagonizes N-Methyl-d-aspartate receptor and extracellular signal-regulated kinase signaling in Aβ oligomers-induced neuropathology/toxicity. J. Agric. Food Chem. 72: 28294–28304, https://doi.org/10.1021/acs.jafc.4c07659 . [DOI: 10.1021/acs.jafc.4c07659]
  15. Chen, Y., Yang, W., Li, X., Li, X., Yang, H., Xu, Z., and Yu, S. (2015). α-Synuclein-induced internalization of NMDA receptors in hippocampal neurons is associated with reduced inward current and Ca(2+) influx upon NMDA stimulation. Neuroscience. 300: 297–306, https://doi.org/10.1016/j.neuroscience.2015.05.035 . [DOI: 10.1016/j.neuroscience.2015.05.035]
  16. Chung, E.K., Chen, L.W., Chan, Y.S., and Yung, K.K. (2008). Downregulation of glial glutamate transporters after dopamine denervation in the striatum of 6-hydroxydopamine-lesioned rats. J. Comp. Neurol. 511: 421–437, https://doi.org/10.1002/cne.21852 . [DOI: 10.1002/cne.21852]
  17. Coombs, I.D. and Cull-Candy, S.G. (2021). Single-channel mechanisms underlying the function, diversity and plasticity of AMPA receptors. Neuropharmacology 198: 108781, https://doi.org/10.1016/j.neuropharm.2021.108781 . [DOI: 10.1016/j.neuropharm.2021.108781]
  18. Cramb, K.M.L., Beccano-Kelly, D., Cragg, S.J., and Wade-Martins, R. (2023). Impaired dopamine release in Parkinson’s disease. Brain 146: 3117–3132, https://doi.org/10.1093/brain/awad064 . [DOI: 10.1093/brain/awad064]
  19. da Silva, R.A., Roda, V.M.P., Akamine, P.S., da Silva, D.S., Siqueira, P.V., Matsuda, M., and Hamassaki, D.E. (2023). Blockade of the TGF-β pathway by galunisertib inhibits the glial-mesenchymal transition in Müller glial cells. Exp. Eye Res. 226: 109336, https://doi.org/10.1016/j.exer.2022.109336 . [DOI: 10.1016/j.exer.2022.109336]
  20. Dąbrowska, K., Albrecht, J., and Zielińska, M. (2018). Protein kinase C-mediated impairment of glutamine outward transport and SN1 transporter distribution by ammonia in mouse cortical astrocytes. Neurochem. Int. 118: 225–232, https://doi.org/10.1016/j.neuint.2018.07.001 . [DOI: 10.1016/j.neuint.2018.07.001]
  21. Escamilla, S., Badillos, R., Comella, J.X., Solé, M., Pérez-Otaño, I., Mut, J.V.S., Sáez-Valero, J., and Cuchillo-Ibáñez, I. (2024). Synaptic and extrasynaptic distribution of NMDA receptors in the cortex of Alzheimer’s disease patients. Alzheimers Dement 20: 8231–8245, https://doi.org/10.1002/alz.14125 . [DOI: 10.1002/alz.14125]
  22. Farca Luna, A.J., Perier, M., and Seugnet, L. (2017). Amyloid precursor protein in Drosophila glia regulates sleep and genes involved in glutamate recycling. J. Neurosci. 37: 4289–4300, https://doi.org/10.1523/jneurosci.2826-16.2017 . [DOI: 10.1523/jneurosci.2826-16.2017]
  23. Feng, Z.J., Zhang, X., and Chergui, K. (2014). Allosteric modulation of NMDA receptors alters neurotransmission in the striatum of a mouse model of Parkinson’s disease. Exp. Neurol. 255: 154–160, https://doi.org/10.1016/j.expneurol.2014.03.001 . [DOI: 10.1016/j.expneurol.2014.03.001]
  24. Ferrer, I., García, M.A., González, I.L., Lucena, D.D., Villalonga, A.R., Tech, M.C., Llorens, F., Garcia-Esparcia, P., Martinez-Maldonado, A., Mendez, M.F., et al.. (2018). Aging-related tau astrogliopathy (ARTAG): not only tau phosphorylation in astrocytes. Brain Pathol. 28: 965–985, https://doi.org/10.1111/bpa.12593 . [DOI: 10.1111/bpa.12593]
  25. Gabrielli, M., Prada, I., Joshi, P., Falcicchia, C., D’Arrigo, G., Rutigliano, G., Battocchio, E., Zenatelli, R., Tozzi, F., Radeghieri, A., et al.. (2022). Microglial large extracellular vesicles propagate early synaptic dysfunction in Alzheimer’s disease. Brain 145: 2849–2868, https://doi.org/10.1093/brain/awac083 . [DOI: 10.1093/brain/awac083]
  26. Gautam, D., Naik, U.P., Naik, M.U., Yadav, S.K., Chaurasia, R.N., and Dash, D. (2023). Glutamate receptor dysregulation and platelet glutamate dynamics in Alzheimer’s and Parkinson’s diseases: insights into current medications. Biomolecules 13: 1609, https://doi.org/10.3390/biom13111609 . [DOI: 10.3390/biom13111609]
  27. Ge, Y. and Wang, Y.T. (2021). GluA1-homomeric AMPA receptor in synaptic plasticity and neurological diseases. Neuropharmacology 197: 108708, https://doi.org/10.1016/j.neuropharm.2021.108708 . [DOI: 10.1016/j.neuropharm.2021.108708]
  28. Gebhardt, F.M., Mitrovic, A.D., Gilbert, D.F., Vandenberg, R.J., Lynch, J.W., and Dodd, P.R. (2010). Exon-skipping splice variants of excitatory amino acid transporter-2 (EAAT2) form heteromeric complexes with full-length EAAT2. J. Biol. Chem. 285: 31313–31324, https://doi.org/10.1074/jbc.m110.153494 . [DOI: 10.1074/jbc.m110.153494]
  29. Ghosh, M., Yang, Y., Rothstein, J.D., and Robinson, M.B. (2011). Nuclear factor-κB contributes to neuron-dependent induction of glutamate transporter-1 expression in astrocytes. J. Neurosci. 31: 9159–9169, https://doi.org/10.1523/jneurosci.0302-11.2011 . [DOI: 10.1523/jneurosci.0302-11.2011]
  30. Guntupalli, S., Park, P., Han, D.H., Zhang, L., Yong, X.L.H., Ringuet, M., Blackmore, D.G., Jhaveri, D.J., Koentgen, F., Widagdo, J., et al.. (2023). Ubiquitination of the GluA1 subunit of AMPA receptors is required for synaptic plasticity, memory, and cognitive flexibility. J. Neurosci. 43: 5448–5457, https://doi.org/10.1523/jneurosci.1542-22.2023 . [DOI: 10.1523/jneurosci.1542-22.2023]
  31. Han, X., Yang, L., Du, H., Sun, Q., Wang, X., Cong, L., Liu, X., Yin, L., Li, S., and Du, Y. (2016). Insulin attenuates beta-amyloid-associated insulin/Akt/EAAT signaling perturbations in human astrocytes. Cell Mol Neurobiol. 36: 851–864, https://doi.org/10.1007/s10571-015-0268-5 . [DOI: 10.1007/s10571-015-0268-5]
  32. Henderson, J.L., Reynolds, J.D., Dexter, F., Atkins, B., Hrdy, J., Poduska, D., and Penning, D.H. (1998). Chronic hypoxemia causes extracellular glutamate concentration to increase in the cerebral cortex of the near-term fetal sheep. Brain Res. Dev. Brain Res. 105: 287–293, https://doi.org/10.1016/s0165-3806(97)00192-2 . [DOI: 10.1016/s0165-3806(97)00192-2]
  33. Herbst, E.A. and Holloway, G.P. (2016). Exercise increases mitochondrial glutamate oxidation in the mouse cerebral cortex. Appl. Physiol. Nutr. Metab. 41: 799–801, https://doi.org/10.1139/apnm-2016-0033 . [DOI: 10.1139/apnm-2016-0033]
  34. Hodgson, N., Trivedi, M., Muratore, C., Li, S., and Deth, R. (2013). Soluble oligomers of amyloid-β cause changes in redox state, DNA methylation, and gene transcription by inhibiting EAAT3 mediated cysteine uptake. J. Alzheimers Dis. 36: 197–209, https://doi.org/10.3233/jad-130101 . [DOI: 10.3233/jad-130101]
  35. Hou, Q., Hu, W., Peterson, L., Gilbert, J., Liu, R., and Man, H.Y. (2024). SIK1 downregulates synaptic AMPA receptors and contributes to cognitive defects in Alzheimer’s disease. Mol. Neurobiol. 61: 10365–10380, https://doi.org/10.1007/s12035-024-04177-6 . [DOI: 10.1007/s12035-024-04177-6]
  36. Huang, S., Tong, H., Lei, M., Zhou, M., Guo, W., Li, G., Tang, X., Li, Z., Mo, M., Zhang, X., et al.. (2018). Astrocytic glutamatergic transporters are involved in Aβ-induced synaptic dysfunction. Brain Res. 1678: 129–137, https://doi.org/10.1016/j.brainres.2017.10.011 . [DOI: 10.1016/j.brainres.2017.10.011]
  37. Huang, T.L. and O’Banion, M.K. (1998). Interleukin-1 beta and tumor necrosis factor-alpha suppress dexamethasone induction of glutamine synthetase in primary mouse astrocytes. J. Neurochem. 71: 1436–1442, https://doi.org/10.1046/j.1471-4159.1998.71041436.x . [DOI: 10.1046/j.1471-4159.1998.71041436.x]
  38. Iemolo, A., De Risi, M., Giordano, N., Torromino, G., Somma, C., Cavezza, D., Colucci, M., Mancini, M., de Iure, A., Granata, R., et al.. (2023). Synaptic mechanisms underlying onset and progression of memory deficits caused by hippocampal and midbrain synucleinopathy. NPJ Parkinson. Dis. 9: 92, https://doi.org/10.1038/s41531-023-00520-1 . [DOI: 10.1038/s41531-023-00520-1]
  39. Iovino, L., Giusti, V., Pischedda, F., Giusto, E., Plotegher, N., Marte, A., Battisti, I., Di Iacovo, A., Marku, A., Piccoli, G., et al.. (2022). Trafficking of the glutamate transporter is impaired in LRRK2-related Parkinson’s disease. Acta Neuropathol. 144: 81–106, https://doi.org/10.1007/s00401-022-02437-0 . [DOI: 10.1007/s00401-022-02437-0]
  40. Iovino, L., Tremblay, M.E., and Civiero, L. (2020). Glutamate-induced excitotoxicity in Parkinson’s disease: the role of glial cells. J. Pharmacol. Sci. 144: 151–164, https://doi.org/10.1016/j.jphs.2020.07.011 . [DOI: 10.1016/j.jphs.2020.07.011]
  41. Jacob, C.P., Koutsilieri, E., Bartl, J., Neuen-Jacob, E., Arzberger, T., Zander, N., Ravid, R., Roggendorf, W., Riederer, P., and Grünblatt, E. (2007). Alterations in expression of glutamatergic transporters and receptors in sporadic Alzheimer’s disease. J. Alzheimers Dis. 11: 97–116, https://doi.org/10.3233/jad-2007-11113 . [DOI: 10.3233/jad-2007-11113]
  42. Jh, Y.Y., Waldvogel, H.J., Rl, M.F., and Kwakowsky, A. (2022). iGluR expression in the hippocampal formation, entorhinal cortex, and superior temporal gyrus in Alzheimer’s disease. Neural. Regen Res. 17: 2197–2199, https://doi.org/10.4103/1673-5374.335804 . [DOI: 10.4103/1673-5374.335804]
  43. Jing, X.Z., Yuan, X.Z., Luo, X., Zhang, S.Y., and Wang, X.P. (2023). An update on nondopaminergic treatments for motor and non-motor symptoms of Parkinson’s disease. Curr. Neuropharmacol. 21: 1806–1826, https://doi.org/10.2174/1570159x20666220222150811 . [DOI: 10.2174/1570159x20666220222150811]
  44. Kalandadze, A., Wu, Y., Fournier, K., and Robinson, M.B. (2004). Identification of motifs involved in endoplasmic reticulum retention-forward trafficking of the GLT-1 subtype of glutamate transporter. J. Neurosci. 24: 5183–5192, https://doi.org/10.1523/jneurosci.0839-04.2004 . [DOI: 10.1523/jneurosci.0839-04.2004]
  45. Kamiya, H. (2002). Kainate receptor-dependent presynaptic modulation and plasticity. Neurosci. Res. 42: 1–6, https://doi.org/10.1016/s0168-0102(01)00303-0 . [DOI: 10.1016/s0168-0102(01)00303-0]
  46. Kamphuis, W., Middeldorp, J., Kooijman, L., Sluijs, J.A., Kooi, E.J., Moeton, M., Freriks, M., Mizee, M.R., and Hol, E.M. (2014). Glial fibrillary acidic protein isoform expression in plaque related astrogliosis in Alzheimer’s disease. Neurobiol. Aging. 35: 492–510, https://doi.org/10.1016/j.neurobiolaging.2013.09.035 . [DOI: 10.1016/j.neurobiolaging.2013.09.035]
  47. Karki, P., Kim, C., Smith, K., Son, D.S., Aschner, M., and Lee, E. (2015). Transcriptional regulation of the astrocytic excitatory amino acid transporter 1 (EAAT1) via NF-κB and yin yang 1 (YY1). J. Biol. Chem. 290: 23725–23737, https://doi.org/10.1074/jbc.m115.649327 . [DOI: 10.1074/jbc.m115.649327]
  48. Karki, P., Webb, A., Smith, K., Lee, K., Son, D.S., Aschner, M., and Lee, E. (2013). cAMP response element-binding protein (CREB) and nuclear factor κB mediate the tamoxifen-induced up-regulation of glutamate transporter 1 (GLT-1) in rat astrocytes. J. Biol. Chem. 288: 28975–28986, https://doi.org/10.1074/jbc.m113.483826 . [DOI: 10.1074/jbc.m113.483826]
  49. Katsipis, G., Tzekaki, E.E., Tsolaki, M., and Pantazaki, A.A. (2021). Salivary GFAP as a potential biomarker for diagnosis of mild cognitive impairment and Alzheimer’s disease and its correlation with neuroinflammation and apoptosis. J. Neuroimmunol. 361: 577744, https://doi.org/10.1016/j.jneuroim.2021.577744 . [DOI: 10.1016/j.jneuroim.2021.577744]
  50. Kim, Y.K. and Na, K.S. (2016). Role of glutamate receptors and glial cells in the pathophysiology of treatment-resistant depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 70: 117–126, https://doi.org/10.1016/j.pnpbp.2016.03.009 . [DOI: 10.1016/j.pnpbp.2016.03.009]
  51. Knorpp, T., Robinson, S.R., Crack, P.J., and Dringen, R. (2006). Glutathione peroxidase-1 contributes to the protection of glutamine synthetase in astrocytes during oxidative stress. J. Neural. Transm. (Vienna) 113: 1145–1155, https://doi.org/10.1007/s00702-005-0389-y . [DOI: 10.1007/s00702-005-0389-y]
  52. Kolacheva, A., Bannikova, A., Pavlova, E., Bogdanov, V., and Ugrumov, M. (2022). Modeling of the progressive degradation of the nigrostriatal dopaminergic system in mice to study the mechanisms of neurodegeneration and neuroplasticity in Parkinson’s disease. Int. J. Mol. Sci. 24: 683, https://doi.org/10.3390/ijms24010683 . [DOI: 10.3390/ijms24010683]
  53. Kosenko, E., Llansola, M., Montoliu, C., Monfort, P., Rodrigo, R., Hernandez-Viadel, M., Erceg, S., Sánchez-Perez, A.M., and Felipo, V. (2003). Glutamine synthetase activity and glutamine content in brain: modulation by NMDA receptors and nitric oxide. Neurochem. Int. 43: 493–499, https://doi.org/10.1016/s0197-0186(03)00039-1 . [DOI: 10.1016/s0197-0186(03)00039-1]
  54. Kostic, M., Zivkovic, N., Cvetanovic, A., Stojanovic, I., and Colic, M. (2017). IL-17 signalling in astrocytes promotes glutamate excitotoxicity: indications for the link between inflammatory and neurodegenerative events in multiple sclerosis. Mult. Scler. Relat. Disord. 11: 12–17, https://doi.org/10.1016/j.msard.2016.11.006 . [DOI: 10.1016/j.msard.2016.11.006]
  55. Lee, D.W., Woo, C.W., Woo, D.C., Kim, J.K., Kim, K.W., and Lee, D.H. (2020). Regional mapping of brain glutamate distributions using glutamate-weighted chemical exchange saturation transfer imaging. Diagn. (Basel) 10: 571, https://doi.org/10.3390/diagnostics10080571 . [DOI: 10.3390/diagnostics10080571]
  56. Lehmann, C., Bette, S., and Engele, J. (2009). High extracellular glutamate modulates expression of glutamate transporters and glutamine synthetase in cultured astrocytes. Brain Res. 1297: 1–8, https://doi.org/10.1016/j.brainres.2009.08.070 . [DOI: 10.1016/j.brainres.2009.08.070]
  57. Li, X., Wang, W., Yan, J., and Zeng, F. (2021). Glutamic acid transporters: targets for neuroprotective therapies in Parkinson’s disease. Front Neurosci. 15: 678154, https://doi.org/10.3389/fnins.2021.678154 . [DOI: 10.3389/fnins.2021.678154]
  58. Lu, K., Li, C., Liu, J., Wang, J., Li, Y., He, B., Li, J., Zhang, X., Wei, M., Tian, Y., et al.. (2023). Impairments in endogenous AMPA receptor dynamics correlates with learning deficits in Alzheimer’s disease model mice. Proc. Natl. Acad. Sci. U. S. A. 120, https://doi.org/10.1073/pnas.2303878120 . [DOI: 10.1073/pnas.2303878120]
  59. Martinez, T.P., Larsen, M.E., Sullivan, E., Woolfrey, K.M., and Dell’Acqua, M.L. (2024). Amyloid-β-induced dendritic spine elimination requires Ca(2+)-permeable AMPA receptors, AKAP-Calcineurin-NFAT signaling, and the NFAT target gene Mdm2. eNeuro 11: 0175–223, https://doi.org/10.1523/eneuro.0175-23.2024 . [DOI: 10.1523/eneuro.0175-23.2024]
  60. Meng, X., Zhong, J., Zeng, C., Yung, K.K.L., Zhang, X., Wu, X., and Qu, S. (2021). MiR-30a-5p regulates GLT-1 function via a PKCα-mediated ubiquitin degradation pathway in a mouse model of Parkinson’s disease. ACS Chem. Neurosci. 12: 1578–1592, https://doi.org/10.1021/acschemneuro.1c00076 . [DOI: 10.1021/acschemneuro.1c00076]
  61. Milanese, M., Zappettini, S., Onofri, F., Musazzi, L., Tardito, D., Bonifacino, T., Messa, M., Racagni, G., Usai, C., Benfenati, F., et al.. (2011). Abnormal exocytotic release of glutamate in a mouse model of amyotrophic lateral sclerosis. J. Neurochem. 116: 1028–1042, https://doi.org/10.1111/j.1471-4159.2010.07155.x . [DOI: 10.1111/j.1471-4159.2010.07155.x]
  62. Moriguchi, S., Han, F., Shioda, N., Yamamoto, Y., Nakajima, T., Nakagawasai, O., Tadano, T., Yeh, J.Z., Narahashi, T., and Fukunaga, K. (2009). Nefiracetam activation of CaM kinase II and protein kinase C mediated by NMDA and metabotropic glutamate receptors in olfactory bulbectomized mice. J. Neurochem. 110: 170–181, https://doi.org/10.1111/j.1471-4159.2009.06122.x . [DOI: 10.1111/j.1471-4159.2009.06122.x]
  63. Murray, T.E., Richards, C.M., Robert-Gostlin, V.N., Bernath, A.K., Lindhout, I.A., and Klegeris, A. (2022). Potential neurotoxic activity of diverse molecules released by astrocytes. Brain Res. Bull. 189: 80–101, https://doi.org/10.1016/j.brainresbull.2022.08.015 . [DOI: 10.1016/j.brainresbull.2022.08.015]
  64. Nafia, I., Re, D.B., Masmejean, F., Melon, C., Kachidian, P., Kerkerian-Le Goff, L., Nieoullon, A., and Had-Aissouni, L. (2008). Preferential vulnerability of mesencephalic dopamine neurons to glutamate transporter dysfunction. J. Neurochem. 105: 484–496, https://doi.org/10.1111/j.1471-4159.2007.05146.x . [DOI: 10.1111/j.1471-4159.2007.05146.x]
  65. Navarria, L., Zaltieri, M., Longhena, F., Spillantini, M.G., Missale, C., Spano, P., and Bellucci, A. (2015). Alpha-synuclein modulates NR2B-containing NMDA receptors and decreases their levels after rotenone exposure. Neurochem. Int. 85-86: 14–23, https://doi.org/10.1016/j.neuint.2015.03.008 . [DOI: 10.1016/j.neuint.2015.03.008]
  66. O’Day, D.H. (2023). Calmodulin and amyloid beta as coregulators of critical events during the onset and progression of Alzheimer’s disease. Int. J. Mol. Sci. 24: 1393, https://doi.org/10.3390/ijms24021393 . [DOI: 10.3390/ijms24021393]
  67. Otero-Garcia, M., Mahajani, S.U., Wakhloo, D., Tang, W., Xue, Y.Q., Morabito, S., Pan, J., Oberhauser, J., Madira, A.E., Shakouri, T., et al.. (2022). Molecular signatures underlying neurofibrillary tangle susceptibility in Alzheimer’s disease. Neuron 110: 2929–2948.e2928, https://doi.org/10.1016/j.neuron.2022.06.021 . [DOI: 10.1016/j.neuron.2022.06.021]
  68. Pan, J., Ma, N., Zhong, J., Yu, B., Wan, J., and Zhang, W. (2021). Age-associated changes in microglia and astrocytes ameliorate blood-brain barrier dysfunction. Mol. Ther. Nucleic. Acids 26: 970–986, https://doi.org/10.1016/j.omtn.2021.08.030 . [DOI: 10.1016/j.omtn.2021.08.030]
  69. Perea, G., Navarrete, M., and Araque, A. (2009). Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci. 32: 421–431, https://doi.org/10.1016/j.tins.2009.05.001 . [DOI: 10.1016/j.tins.2009.05.001]
  70. Perszyk, R.E., Zheng, Z., Banke, T.G., Zhang, J., Xie, L., McDaniel, M.J., Katzman, B.M., Pelly, S.C., Yuan, H., Liotta, D.C., et al.. (2021). The negative allosteric modulator EU1794-4 reduces single-channel conductance and Ca(2+) permeability of GluN1/GluN2A N-Methyl-d-Aspartate receptors. Mol. Pharmacol. 99: 399–411, https://doi.org/10.1124/molpharm.120.000218 . [DOI: 10.1124/molpharm.120.000218]
  71. Piccirillo, S., Magi, S., Preziuso, A., Castaldo, P., Amoroso, S., and Lariccia, V. (2020). Gateways for glutamate neuroprotection in Parkinson’s disease (PD): essential role of EAAT3 and NCX1 revealed in an in vitro model of PD. Cells 9: 2037, https://doi.org/10.3390/cells9092037 . [DOI: 10.3390/cells9092037]
  72. Poletti, S., Radaelli, D., Bosia, M., Buonocore, M., Pirovano, A., Lorenzi, C., Cavallaro, R., Smeraldi, E., and Benedetti, F. (2014). Effect of glutamate transporter EAAT2 gene variants and gray matter deficits on working memory in schizophrenia. Eur. Psychiatry 29: 219–225, https://doi.org/10.1016/j.eurpsy.2013.07.003 . [DOI: 10.1016/j.eurpsy.2013.07.003]
  73. Price, B.R., Johnson, L.A., and Norris, C.M. (2021). Reactive astrocytes: the nexus of pathological and clinical hallmarks of Alzheimer’s disease. Ageing Res. Rev. 68: 101335, https://doi.org/10.1016/j.arr.2021.101335 . [DOI: 10.1016/j.arr.2021.101335]
  74. Prinkey, K., Thompson, E., Saikia, J., Cid, T., and Dore, K. (2024). Fluorescence lifetime imaging of AMPA receptor endocytosis in living neurons: effects of Aβ and PP1. Front Mol. Neurosci. 17: 1409401, https://doi.org/10.3389/fnmol.2024.1409401 . [DOI: 10.3389/fnmol.2024.1409401]
  75. Quincozes-Santos, A., Santos, C.L., de Souza Almeida, R.R., da Silva, A., Thomaz, N.K., Costa, N.L.F., Weber, F.B., Schmitz, I., Medeiros, L.S., Medeiros, L., et al.. (2021). Gliotoxicity and glioprotection: the dual role of glial cells. Mol. Neurobiol. 58: 6577–6592, https://doi.org/10.1007/s12035-021-02574-9 . [DOI: 10.1007/s12035-021-02574-9]
  76. Reiner, A. and Levitz, J. (2018). Glutamatergic signaling in the central nervous system: ionotropic and metabotropic receptors in concert. Neuron 98: 1080–1098, https://doi.org/10.1016/j.neuron.2018.05.018 . [DOI: 10.1016/j.neuron.2018.05.018]
  77. Rizor, A., Pajarillo, E., Nyarko-Danquah, I., Digman, A., Mooneyham, L., Son, D.S., Aschner, M., and Lee, E. (2021). Manganese-induced reactive oxygen species activate IκB kinase to upregulate YY1 and impair glutamate transporter EAAT2 function in human astrocytes in vitro. Neurotoxicology 86: 94–103, https://doi.org/10.1016/j.neuro.2021.07.004 . [DOI: 10.1016/j.neuro.2021.07.004]
  78. Rizor, A., Pajarillo, E., Son, D.S., Aschner, M., and Lee, E. (2022). Manganese phosphorylates Yin Yang 1 at serine residues to repress EAAT2 in human H4 astrocytes. Toxicol. Lett. 355: 41–46, https://doi.org/10.1016/j.toxlet.2021.11.007 . [DOI: 10.1016/j.toxlet.2021.11.007]
  79. Robinson, S.R. (2000). Neuronal expression of glutamine synthetase in Alzheimer’s disease indicates a profound impairment of metabolic interactions with astrocytes. Neurochem. Int. 36: 471–482, https://doi.org/10.1016/s0197-0186(99)00150-3 . [DOI: 10.1016/s0197-0186(99)00150-3]
  80. Schwab, K., Chasapopoulou, Z., Frahm, S., Magbagbeolu, M., Cranston, A., Harrington, C.R., Wischik, C.M., Theuring, F., and Riedel, G. (2022). Glutamatergic transmission and receptor expression in the synucleinopathy h-α-synL62 mouse model: effects of hydromethylthionine. Cell Signal 97: 110386, https://doi.org/10.1016/j.cellsig.2022.110386 . [DOI: 10.1016/j.cellsig.2022.110386]
  81. Scott, H.A., Gebhardt, F.M., Mitrovic, A.D., Vandenberg, R.J., and Dodd, P.R. (2011). Glutamate transporter variants reduce glutamate uptake in Alzheimer’s disease. Neurobiol. Aging 32: 553.e551–511, https://doi.org/10.1016/j.neurobiolaging.2010.03.008 . [DOI: 10.1016/j.neurobiolaging.2010.03.008]
  82. Sheehan, P.W., Nadarajah, C.J., Kanan, M.F., Patterson, J.N., Novotny, B., Lawrence, J.H., King, M.W., Brase, L., Inman, C.E., Yuede, C.M., et al.. (2023). An astrocyte BMAL1-BAG3 axis protects against alpha-synuclein and tau pathology. Neuron 111: 2383–2398, https://doi.org/10.1016/j.neuron.2023.05.006 . [DOI: 10.1016/j.neuron.2023.05.006]
  83. Shen, L., Chen, C., Yang, A., Chen, Y., Liu, Q., and Ni, J. (2015). Redox proteomics identification of specifically carbonylated proteins in the hippocampi of triple transgenic Alzheimer’s disease mice at its earliest pathological stage. J. Proteom. 123: 101–113, https://doi.org/10.1016/j.jprot.2015.04.005 . [DOI: 10.1016/j.jprot.2015.04.005]
  84. Shen, X. and Xu, G. (2009). Role of IL-1beta on the glutamine synthetase in retinal Müller cells under high glucose conditions. Curr. Eye Res. 34: 727–736, https://doi.org/10.1080/02713680903030875 . [DOI: 10.1080/02713680903030875]
  85. Sheng, L., Stewart, T., Yang, D., Thorland, E., Soltys, D., Aro, P., Khrisat, T., Xie, Z., Li, N., Liu, Z., et al.. (2020). Erythrocytic α-synuclein contained in microvesicles regulates astrocytic glutamate homeostasis: a new perspective on Parkinson’s disease pathogenesis. Acta Neuropathol. Commun. 8: 102, https://doi.org/10.1186/s40478-020-00983-w . [DOI: 10.1186/s40478-020-00983-w]
  86. Sitzia, G., Mantas, I., Zhang, X., Svenningsson, P., and Chergui, K. (2020). NMDA receptors are altered in the substantia nigra pars reticulata and their blockade ameliorates motor deficits in experimental parkinsonism. Neuropharmacology 174: 108136, https://doi.org/10.1016/j.neuropharm.2020.108136 . [DOI: 10.1016/j.neuropharm.2020.108136]
  87. Song, X., Gong, Z., Liu, K., Kou, J., Liu, B., and Liu, K. (2020). Baicalin combats glutamate excitotoxicity via protecting glutamine synthetase from ROS-induced 20S proteasomal degradation. Redox Biol. 34: 101559, https://doi.org/10.1016/j.redox.2020.101559 . [DOI: 10.1016/j.redox.2020.101559]
  88. Song, Z., Bian, Z., Zhang, Z., Wang, X., Zhu, A., and Zhu, G. (2021). Astrocytic Kir4.1 regulates NMDAR/calpain signaling axis in lipopolysaccharide-induced depression-like behaviors in mice. Toxicol. Appl. Pharmacol. 429: 115711, https://doi.org/10.1016/j.taap.2021.115711 . [DOI: 10.1016/j.taap.2021.115711]
  89. Srivastava, A., Das, B., Yao, A.Y., and Yan, R. (2020). Metabotropic glutamate receptors in Alzheimer’s disease synaptic dysfunction: therapeutic opportunities and hope for the future. J. Alzheimers Dis. 78: 1345–1361, https://doi.org/10.3233/jad-201146 . [DOI: 10.3233/jad-201146]
  90. Stepan, J., Heinz, D.E., Dethloff, F., Wiechmann, S., Martinelli, S., Hafner, K., Ebert, T., Junglas, E., Häusl, A.S., Pöhlmann, M.L., et al.. (2024). Inhibiting Hippo pathway kinases releases WWC1 to promote AMPAR-dependent synaptic plasticity and long-term memory in mice. Sci. Signal 17: eadj6603, https://doi.org/10.1126/scisignal.adj6603 . [DOI: 10.1126/scisignal.adj6603]
  91. Sun, Y.W., Zhang, L.Y., Gong, S.J., Hu, Y.Y., Zhang, J.G., Xian, X.H., Li, W.B., and Zhang, M. (2021). The p38 MAPK/NF-κB pathway mediates GLT-1 up-regulation during cerebral ischemic preconditioning-induced brain ischemic tolerance in rats. Brain Res. Bull. 175: 224–233, https://doi.org/10.1016/j.brainresbull.2021.07.029 . [DOI: 10.1016/j.brainresbull.2021.07.029]
  92. Swamy, M., Sirajudeen, K.N., and Chandran, G. (2009). Nitric oxide (NO), citrulline-NO cycle enzymes, glutamine synthetase, and oxidative status in kainic acid-mediated excitotoxicity in rat brain. Drug Chem. Toxicol. 32: 326–331, https://doi.org/10.1080/01480540903130641 . [DOI: 10.1080/01480540903130641]
  93. Talantova, M., Sanz-Blasco, S., Zhang, X., Xia, P., Akhtar, M.W., Okamoto, S., Dziewczapolski, G., Nakamura, T., Cao, G., Pratt, A.E., et al.. (2013). Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc. Natl. Acad. Sci. U. S. A. 110: E2518–E2527, https://doi.org/10.1073/pnas.1306832110 . [DOI: 10.1073/pnas.1306832110]
  94. Tavalin, S.J. (2024). Familial Alzheimer’s disease mutations in amyloid precursor protein impair calcineurin signaling to NMDA receptors. J. Biol. Chem. 301: 108147, https://doi.org/10.1016/j.jbc.2024.108147 . [DOI: 10.1016/j.jbc.2024.108147]
  95. Tong, H., Zhang, X., Meng, X., Xu, P., Zou, X., and Qu, S. (2017). Amyloid-beta peptide decreases expression and function of glutamate transporters in nervous system cells. Int. J. Biochem. Cell Biol. 85: 75–84, https://doi.org/10.1016/j.biocel.2017.01.017 . [DOI: 10.1016/j.biocel.2017.01.017]
  96. Tozzi, A., de Iure, A., Bagetta, V., Tantucci, M., Durante, V., Quiroga-Varela, A., Costa, C., Di Filippo, M., Ghiglieri, V., Latagliata, E.C., et al.. (2016). Alpha-synuclein produces early behavioral alterations via striatal cholinergic synaptic dysfunction by interacting with GluN2D N-Methyl-D-Aspartate receptor subunit. Biol. Psychiat. 79: 402–414, https://doi.org/10.1016/j.biopsych.2015.08.013 . [DOI: 10.1016/j.biopsych.2015.08.013]
  97. Valdivielso, J.M., Eritja, À., Caus, M., and Bozic, M. (2020). Glutamate-gated NMDA receptors: insights into the function and signaling in the kidney. Biomolecules 10: 1051, https://doi.org/10.3390/biom10071051 . [DOI: 10.3390/biom10071051]
  98. Vandresen-Filho, S., Martins, W.C., Bertoldo, D.B., Mancini, G., Herculano, B.A., de Bem, A.F., and Tasca, C.I. (2013). Atorvastatin prevents cell damage via modulation of oxidative stress, glutamate uptake and glutamine synthetase activity in hippocampal slices subjected to oxygen/glucose deprivation. Neurochem. Int. 62: 948–955, https://doi.org/10.1016/j.neuint.2013.03.002 . [DOI: 10.1016/j.neuint.2013.03.002]
  99. von Bartheld, C.S., Bahney, J., and Herculano-Houzel, S. (2016). The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J. Comp. Neurol. 524: 3865–3895, https://doi.org/10.1002/cne.24040 . [DOI: 10.1002/cne.24040]
  100. Voronkov, D.N., Stavrovskaya, A.V., Potapov, I.A., Guschina, A.S., and Olshanskiy, A.S. (2023). Glial reaction in a neuroinflammatory model of Parkinson’s disease. Bull. Exp. Biol. Med. 174: 693–698, https://doi.org/10.1007/s10517-023-05772-8 . [DOI: 10.1007/s10517-023-05772-8]
  101. Wang, S., Zhang, H., Geng, B., Xie, Q., Li, W., Deng, Y., Shi, W., Pan, Y., Kang, X., and Wang, J. (2018). 2-arachidonyl glycerol modulates astrocytic glutamine synthetase via p38 and ERK1/2 pathways. J. Neuroinflammation 15: 220, https://doi.org/10.1186/s12974-018-1254-x . [DOI: 10.1186/s12974-018-1254-x]
  102. Watts, J., Fowler, L., Whitton, P.S., and Pearce, B. (2005). Release of arginine, glutamate and glutamine in the hippocampus of freely moving rats: involvement of nitric oxide. Brain Res. Bull. 65: 521–528, https://doi.org/10.1016/j.brainresbull.2005.03.011 . [DOI: 10.1016/j.brainresbull.2005.03.011]
  103. Wei, L., Chen, C., Ding, L., Mo, M., Zou, J., Lu, Z., Li, H., Wu, H., Dai, Y., Xu, P., et al.. (2019). Wnt1 promotes EAAT2 expression and mediates the protective effects of astrocytes on dopaminergic cells in Parkinson’s disease. Neural. Plast. 2019: 1247276, https://doi.org/10.1155/2019/1247276 . [DOI: 10.1155/2019/1247276]
  104. Xiao, H., Zhou, H., Chen, G., Liu, S., and Li, G. (2007). Interaction between inducible nitric oxide synthase and calmodulin in Ca2+-free and -bound forms. J. Proteome Res. 6: 1426–1429, https://doi.org/10.1021/pr060544l . [DOI: 10.1021/pr060544l]
  105. Xu, B., Xu, Z., Deng, Y., Liu, W., Yang, H., and Wei, Y.G. (2013). MK-801 protects against intracellular Ca(2+) overloading and improves N-methyl-D-aspartate receptor expression in cerebral cortex of methylmercury-poisoned rats. J. Mol. Neurosci. 49: 162–171, https://doi.org/10.1007/s12031-012-9926-y . [DOI: 10.1007/s12031-012-9926-y]
  106. Yan, J., Bengtson, C.P., Buchthal, B., Hagenston, A.M., and Bading, H. (2020). Coupling of NMDA receptors and TRPM4 guides discovery of unconventional neuroprotectants. Science 370: eaay3302, https://doi.org/10.1126/science.aay3302 . [DOI: 10.1126/science.aay3302]
  107. Yang, J., Hertz, E., Zhang, X., Leinartaité, L., Lundius, E.G., Li, J., and Svenningsson, P. (2016). Overexpression of α-synuclein simultaneously increases glutamate NMDA receptor phosphorylation and reduces glucocerebrosidase activity. Neurosci. Lett. 611: 51–58, https://doi.org/10.1016/j.neulet.2015.11.023 . [DOI: 10.1016/j.neulet.2015.11.023]
  108. Yang, W., Yu, W., Li, X., Li, X., and Yu, S. (2020). Alpha-synuclein differentially reduces surface expression of N-methyl-d-aspartate receptors in the aging human brain. Neurobiol Aging 90: 24–32, https://doi.org/10.1016/j.neurobiolaging.2020.02.015 . [DOI: 10.1016/j.neurobiolaging.2020.02.015]
  109. Yang, X., Gong, R., Qin, L., Bao, Y., Fu, Y., Gao, S., Yang, H., Ni, J., Yuan, T.F., and Lu, W. (2022). Trafficking of NMDA receptors is essential for hippocampal synaptic plasticity and memory consolidation. Cell Rep. 40: 111217, https://doi.org/10.1016/j.celrep.2022.111217 . [DOI: 10.1016/j.celrep.2022.111217]
  110. Yu, C., Ruan, Y., Sun, X., Chen, C., Shen, T., Liu, C., Qiu, W., Lu, Z., Chan, S.O., and Wang, L. (2023). rTMS ameliorates depression/anxiety-like behaviors in experimental autoimmune encephalitis by inhibiting neurotoxic reactive astrocytes. J. Affect. Disord. 331: 352–361, https://doi.org/10.1016/j.jad.2023.03.069 . [DOI: 10.1016/j.jad.2023.03.069]
  111. Yu, L., Li, Y., Lv, Y., Gu, B., Cai, J., Liu, Q.S., and Zhao, L. (2024). Treadmill exercise facilitates synaptic plasticity in APP/PS1 mice by regulating hippocampal AMPAR activity. Cells 13: 1608, https://doi.org/10.3390/cells13191608 . [DOI: 10.3390/cells13191608]
  112. Zhang, T., Musheshe, N., van der Veen, C., Kessels, H.W., Dolga, A., De Deyn, P., Eisel, U., and Schmidt, M. (2023). The expression of Epac2 and GluA3 in an Alzheimer’s disease experimental model and postmortem patient samples. Biomedicines 11: 2096, https://doi.org/10.3390/biomedicines11082096 . [DOI: 10.3390/biomedicines11082096]
  113. Zhang, T. and Schmidt, M. (2025). Targeting Epac2 and GluA3-containing AMPARs: a novel therapeutic strategy for Alzheimer’s disease. Neural. Regen Res. 20: 3223–3224, https://doi.org/10.4103/nrr.nrr-d-24-00751 . [DOI: 10.4103/nrr.nrr-d-24-00751]
  114. Zheng, J., Xie, Y., Ren, L., Qi, L., Wu, L., Pan, X., Zhou, J., Chen, Z., and Liu, L. (2021). GLP-1 improves the supportive ability of astrocytes to neurons by promoting aerobic glycolysis in Alzheimer’s disease. Mol. Metab. 47: 101180, https://doi.org/10.1016/j.molmet.2021.101180 . [DOI: 10.1016/j.molmet.2021.101180]
  115. Zheng, J.Y., Sun, J., Ji, C.M., Shen, L., Chen, Z.J., Xie, P., Sun, Y.Z., and Yu, R.T. (2017). Selective deletion of apolipoprotein E in astrocytes ameliorates the spatial learning and memory deficits in Alzheimer’s disease (APP/PS1) mice by inhibiting TGF-β/Smad2/STAT3 signaling. Neurobiol. Aging 54: 112–132, https://doi.org/10.1016/j.neurobiolaging.2017.03.002 . [DOI: 10.1016/j.neurobiolaging.2017.03.002]
  116. Zhou, L. and Duan, J. (2021). The NMDAR GluN1-1a C-terminus binds to CaM and regulates synaptic function. Biochem. Biophys. Res. Commun. 534: 323–329, https://doi.org/10.1016/j.bbrc.2020.11.085 . [DOI: 10.1016/j.bbrc.2020.11.085]
  117. Zhu, X., Dong, J., Han, B., Huang, R., Zhang, A., Xia, Z., Chang, H., Chao, J., and Yao, H. (2017). Neuronal nitric oxide synthase contributes to PTZ kindling-induced cognitive impairment and depressive-like behavior. Front Behav. Neurosci. 11: 203, https://doi.org/10.3389/fnbeh.2017.00203 . [DOI: 10.3389/fnbeh.2017.00203]
  118. Zou, J., Wang, Y.X., Dou, F.F., Lü, H.Z., Ma, Z.W., Lu, P.H., and Xu, X.M. (2010). Glutamine synthetase down-regulation reduces astrocyte protection against glutamate excitotoxicity to neurons. Neurochem. Int. 56: 577–584, https://doi.org/10.1016/j.neuint.2009.12.021 . [DOI: 10.1016/j.neuint.2009.12.021]
  119. Zumkehr, J., Rodriguez-Ortiz, C.J., Cheng, D., Kieu, Z., Wai, T., Hawkins, C., Kilian, J., Lim, S.L., Medeiros, R., and Kitazawa, M. (2015). Ceftriaxone ameliorates tau pathology and cognitive decline via restoration of glial glutamate transporter in a mouse model of Alzheimer’s disease. Neurobiol. Aging 36: 2260–2271, https://doi.org/10.1016/j.neurobiolaging.2015.04.005 . [DOI: 10.1016/j.neurobiolaging.2015.04.005]

Word Cloud

Created with Highcharts 10.0.0diseaseglutamateastrocytesneuronsAlzheimer'sabnormaltranscriptiontranslationevenmodificationexcitatorycentralnervoussystemThereforemaintainingmayrelatedfunctionproteinsmetabolismpostsynapticParkinson'sGlutamatemainneurotransmitterhumanalsopotentneurotoxinlow-dosenon-toxicextracellularconcentrationssynapsesensurereliabilitysynaptictransmissionessentialnormalphysiologicalfunctionsstudiesconfirmedspecificpathogenesisdiseasescausedneuronaldamagedeathdueinter-synapticconcentrationaminoacidtransporterglutaminesynthetaseexpressiontwoto theof bothby theprocessoxidativestressinflammatoryresponsesoccurringreviewmainlydiscussrelationshiprecentyearsastrocytes:linkAlzheimer’sParkinson’sreceptors

Similar Articles

Cited By

No available data.