Integrating ultrastructural diffraction imaging and multiscale modelling to unveil the nanoscale mechanics of arthropod cuticle in bending.

Yanhong Wang, Ettore Barbieri, Yi Zhang, Nick Terrill, Himadri Shikhar Gupta
Author Information
  1. Yanhong Wang: School of Engineering and Materials Science and Institute of Bioengineering, Queen Mary University of London, London, UK.
  2. Ettore Barbieri: Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Research Institute for Value-Added-Information Generation (VAiG), Center for Mathematical Science and Advanced Technology (MAT), 3173-25, Showa-machi, Kanazawa-ku, Yokohama, Japan. ORCID
  3. Yi Zhang: School of Engineering and Materials Science and Institute of Bioengineering, Queen Mary University of London, London, UK.
  4. Nick Terrill: Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
  5. Himadri Shikhar Gupta: School of Engineering and Materials Science and Institute of Bioengineering, Queen Mary University of London, London, UK. ORCID

Abstract

Determining the mechano-structural relations in biological materials with hierarchical structure is crucial to understanding natural optimization strategies and designing functional bioinspired composites. However, measuring the nanoscale mechanics and dynamic response is challenging when the specimen geometry and loading environment are physiologically complex. To overcome this challenge, we develop a combination of synchrotron X-ray diffraction testing and analytical modelling to explore the mechano-structural changes during bending loads on stomatopod cuticle. Stomatopod cuticle is an example of a hierarchical biomaterial optimized for high impact and bending resistance. Using models for large deformations of elastic continua, we measure cuticle strains from macroscopic deformations and combine diffraction-based fibril strains with stresses to quantify the local elastic moduli and nanoscale strain concentration factors, which are found to vary across cuticle sub-regions and under different flexion loading modes. This approach has the advantage of identifying constituent biomaterial properties and mechanisms and is also suitable for studying time-dependent changes, such as concurrent strains of the nanofibrous phase that occur during physiological loading.

Keywords

References

  1. Bioinspir Biomim. 2018 May 15;13(4):041004 [PMID: 29595522]
  2. J Mech Behav Biomed Mater. 2010 Aug;3(6):454-63 [PMID: 20621028]
  3. Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17741-6 [PMID: 17095608]
  4. Acta Biomater. 2008 May;4(3):587-96 [PMID: 18299257]
  5. Adv Mater. 2015 Oct 7;27(37):5455-76 [PMID: 26305858]
  6. Bone. 2010 Jun;46(6):1475-85 [PMID: 20206724]
  7. Nanoscale. 2017 Aug 10;9(31):11249-11260 [PMID: 28753215]
  8. J R Soc Interface. 2019 Aug 30;16(157):20190203 [PMID: 31455162]
  9. Proc Natl Acad Sci U S A. 2011 Aug 30;108(35):14416-21 [PMID: 21873221]
  10. Sci Adv. 2020 Jun 12;6(24):eaba4171 [PMID: 32582855]
  11. Micron. 2016 Mar;82:74-85 [PMID: 26774746]
  12. Adv Mater. 2013 Jan 4;25(1):31-48 [PMID: 23161399]
  13. ACS Nano. 2020 Dec 22;14(12):16535-16546 [PMID: 33034451]
  14. Bioinspir Biomim. 2016 Sep 09;11(5):055006 [PMID: 27609556]
  15. Sci Rep. 2016 May 23;6:26249 [PMID: 27211574]
  16. J R Soc Interface. 2018 Jul;15(144): [PMID: 30045895]
  17. Science. 2012 Jun 8;336(6086):1275-80 [PMID: 22679090]
  18. Adv Mater. 2010 Jan 26;22(4):519-26 [PMID: 20217746]
  19. Integr Comp Biol. 2021 Sep 8;61(2):643-654 [PMID: 33974067]
  20. Acta Biomater. 2019 Dec;100:18-28 [PMID: 31563691]
  21. J Synchrotron Radiat. 2021 May 1;28(Pt 3):939-947 [PMID: 33950002]
  22. J Exp Biol. 2007 Dec;210(Pt 24):4272-8 [PMID: 18055616]
  23. J R Soc Interface. 2020 Jul;17(168):20200378 [PMID: 32674704]
  24. Biophys J. 2000 Oct;79(4):1737-46 [PMID: 11023882]
  25. Adv Mater. 2016 Aug;28(32):6835-44 [PMID: 27238289]
  26. J R Soc Interface. 2025 Mar;22(224):20240601 [PMID: 40101778]
  27. J Mol Biol. 1978 Apr 5;120(2):167-81 [PMID: 642008]
  28. J Mech Behav Biomed Mater. 2020 Oct;110:103914 [PMID: 32957213]
  29. Bone. 2009 Jun;44(6):1105-10 [PMID: 19236962]
  30. Tissue Cell. 1972;4(2):189-217 [PMID: 4600349]
  31. J R Soc Interface. 2018 Aug;15(145): [PMID: 30158184]
  32. Biol Rev Camb Philos Soc. 1969 Nov;44(4):531-62 [PMID: 5308457]
  33. Acta Biomater. 2007 May;3(3):301-9 [PMID: 17208527]
  34. J Mech Behav Biomed Mater. 2013 Dec;28:366-82 [PMID: 23707600]
  35. Acta Biomater. 2021 Oct 15;134:490-498 [PMID: 34293506]
  36. Acta Biomater. 2020 Apr 15;107:204-217 [PMID: 32109599]
  37. J Mech Behav Biomed Mater. 2015 Dec;52:14-21 [PMID: 25862347]
  38. Nat Commun. 2014;5:3187 [PMID: 24476684]
  39. J Exp Biol. 2010 Oct 15;213(Pt 20):3496-504 [PMID: 20889830]
  40. Biol Lett. 2015 Sep;11(9):20150558 [PMID: 26399976]
  41. J Mech Behav Biomed Mater. 2011 Feb;4(2):129-45 [PMID: 21262491]
  42. Adv Mater. 2018 Mar;30(9): [PMID: 29336499]

Grants

  1. /UKRI
  2. /BBSRC
  3. /Diamond Light Source (DLS)
  4. /EPSRC

MeSH Term

Animals
X-Ray Diffraction
Models, Biological
Biomechanical Phenomena
Arthropods
Elastic Modulus

Word Cloud

Created with Highcharts 10.0.0cuticlenanoscaleloadingdiffractionmodellingbendingstrainsmechano-structuralhierarchicalmechanicssynchrotronX-raychangesstomatopodbiomaterialdeformationselasticfibrilmultiscaleDeterminingrelationsbiologicalmaterialsstructurecrucialunderstandingnaturaloptimizationstrategiesdesigningfunctionalbioinspiredcompositesHowevermeasuringdynamicresponsechallengingspecimengeometryenvironmentphysiologicallycomplexovercomechallengedevelopcombinationtestinganalyticalexploreloadsStomatopodexampleoptimizedhighimpactresistanceUsingmodelslargecontinuameasuremacroscopiccombinediffraction-basedstressesquantifylocalmodulistrainconcentrationfactorsfoundvaryacrosssub-regionsdifferentflexionmodesapproachadvantageidentifyingconstituentpropertiesmechanismsalsosuitablestudyingtime-dependentconcurrentnanofibrousphaseoccurphysiologicalIntegratingultrastructuralimagingunveilarthropodchitinsiturealistic

Similar Articles

Cited By