Efficiency and control trade-offs and work loop characteristics of flapping-wing systems with synchronous and asynchronous muscles.

Suyash Agrawal, Christopher Rahn, Bo Cheng
Author Information
  1. Suyash Agrawal: Department of Mechanical Engineering, Pennsylvania State University, University Park, PA, USA.
  2. Christopher Rahn: Department of Mechanical Engineering, Pennsylvania State University, University Park, PA, USA.
  3. Bo Cheng: Department of Mechanical Engineering, Pennsylvania State University, University Park, PA, USA. ORCID

Abstract

Natural fliers with flapping wings face the dual challenges of energy efficiency and active control of wing motion for achieving diverse modes of flight. It is hypothesized that flapping-wing systems use resonance to improve muscle mechanical output energy efficiency, a principle often followed in bioinspired flapping-wing robots. However, resonance can limit the degree of active control, a trade-off rooted in the dynamics of wing motor systems and can be potentially reflected in muscle work loops. To systematically investigate how energy efficiency trades off with active control of wingbeat frequency and amplitude, here we developed a parsimonious model of the wing motor system with either synchronous or asynchronous power muscles. We then non-dimensionalized the model and performed simulations to examine model characteristics as functions of Weis-Fogh number and dimensionless flapping frequency. For synchronous power muscles, our model predicts that energy efficiency trades off with frequency control rather than amplitude control at high Weis-Fogh numbers; however, no such trade-off was found for models with asynchronous power muscles. The work loops alone are insufficient to fully capture wing motor characteristics, and therefore fail to directly reflect the trade-offs. Finally, using simulation results, we predict that natural fliers function at Weis-Fogh numbers close to 1.

Keywords

References

  1. J Exp Biol. 2012 Apr 1;215(Pt 7):1051-2 [PMID: 22399648]
  2. J R Soc Interface. 2019 Dec;16(161):20190543 [PMID: 31847756]
  3. J Exp Biol. 1967 Aug;47(1):77-97 [PMID: 6058982]
  4. Bioinspir Biomim. 2009 Mar;4(1):015002 [PMID: 19258688]
  5. J R Soc Interface. 2023 May;20(202):20230141 [PMID: 37194272]
  6. Proc Biol Sci. 2022 Dec 14;289(1988):20222076 [PMID: 36475440]
  7. J Exp Biol. 1999 Dec;202(Pt 23):3439-48 [PMID: 10562527]
  8. Sci Adv. 2020 Feb 05;6(6):eaay3115 [PMID: 32076646]
  9. J R Soc Interface. 2021 Feb;18(175):20200888 [PMID: 33593213]
  10. J Exp Biol. 2000 Sep;203(Pt 18):2713-22 [PMID: 10952872]
  11. Biol Lett. 2022 May;18(5):20220063 [PMID: 35611583]
  12. J Exp Biol. 1997 Apr;200(Pt 7):1133-43 [PMID: 9131808]
  13. Integr Comp Biol. 2024 Sep 17;64(2):632-643 [PMID: 38816217]
  14. J Exp Biol. 2017 Apr 15;220(Pt 8):1382-1395 [PMID: 28424311]
  15. Proc Biol Sci. 2021 May 26;288(1951):20210352 [PMID: 34034520]
  16. Bioinspir Biomim. 2023 May 05;18(4): [PMID: 37042474]
  17. J Exp Biol. 2016 Nov 15;219(Pt 22):3518-3531 [PMID: 27595850]
  18. Bioinspir Biomim. 2024 Dec 23;20(1): [PMID: 39569924]
  19. Bioinspir Biomim. 2013 Dec;8(4):046008 [PMID: 24166827]
  20. J Exp Biol. 2011 Dec 15;214(Pt 24):4092-106 [PMID: 22116752]
  21. J R Soc Interface. 2022 May;19(190):20220080 [PMID: 35582811]
  22. J R Soc Interface. 2025 Mar;22(224):20240660 [PMID: 40101779]
  23. Science. 1995 Apr 7;268(5207):87-90 [PMID: 7701346]
  24. J R Soc Interface. 2023 Apr;20(201):20230029 [PMID: 37015268]
  25. Bioinspir Biomim. 2017 Feb 15;12(2):025005 [PMID: 28079026]
  26. J R Soc Interface. 2014 Sep 6;11(98):20140541 [PMID: 25008082]
  27. Proc Biol Sci. 2024 Jun;291(2025):20240317 [PMID: 38920055]
  28. Front Physiol. 2020 Oct 09;11:1038 [PMID: 33162892]
  29. J Exp Biol. 2004 Dec;207(Pt 26):4651-62 [PMID: 15579560]

Grants

  1. /Office of Naval Research

MeSH Term

Wings, Animal
Flight, Animal
Models, Biological
Animals
Biomechanical Phenomena
Muscle, Skeletal

Word Cloud

Created with Highcharts 10.0.0controlenergyefficiencyactivewingmodelmusclesflappingflapping-wingsystemstrade-offmotorworkfrequencysynchronousasynchronouspowercharacteristicsWeis-Foghfliersflightresonancemusclecanloopstradesamplitudenumberstrade-offsNaturalwingsfacedualchallengesmotionachievingdiversemodeshypothesizeduseimprovemechanicaloutputprincipleoftenfollowedbioinspiredrobotsHoweverlimitdegreerooteddynamicspotentiallyreflectedsystematicallyinvestigatewingbeatdevelopedparsimonioussystemeithernon-dimensionalizedperformedsimulationsexaminefunctionsnumberdimensionlesspredictsratherhighhoweverfoundmodelsaloneinsufficientfullycapturethereforefaildirectlyreflectFinallyusingsimulationresultspredictnaturalfunctionclose1Efficiencyloopenergeticsworkloop

Similar Articles

Cited By (1)