The Flavohemoglobin Hmp and Nitric Oxide Reductase Restrict Initial nir Expression in the Bet-Hedging Denitrifier Paracoccus denitrificans by Curtailing Hypoxic NO Signalling.

Ricarda Kellermann, Santosh Kumar, Andrew J Gates, Lars Bakken, Stephen Spiro, Linda Bergaust
Author Information
  1. Ricarda Kellermann: Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, ��s, Norway. ORCID
  2. Santosh Kumar: Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA.
  3. Andrew J Gates: Centre for Advanced Microbiology, School of Biological Sciences, University of East Anglia, Norwich, UK.
  4. Lars Bakken: Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, ��s, Norway.
  5. Stephen Spiro: Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA.
  6. Linda Bergaust: Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, ��s, Norway. ORCID

Abstract

In denitrifying bacteria, nitric oxide (NO) is an electron acceptor and a free intermediate produced during anaerobic respiration. NO is also a signal for transcriptional regulation of the genes encoding nitrite (Nir), nitric oxide (Nor) and nitrous oxide reductases (NOR). We hypothesise that the timing and strength of the NO signal necessary for full nir expression are key factors in the bet-hedging strategy of Paracoccus denitrificans, and that systems scavenging NO under hypoxia reduce the probability of nir induction. We show that the flavohemoglobin Hmp scavenges NO in aerobic cultures and that hmp is regulated by an NsrR-type repressor. Using a strain with an mCherry-nirS fusion, we found a clear, negative effect of Hmp on initial nir expression. Deletion of norCB eliminated bet-hedging, but the elevated NO levels in co-cultures with the wild type did not abolish bet-hedging in the wild type cells. Our results demonstrate clear roles for Hmp and Nor in regulating the expression of nirS through NO scavenging, while suggesting that the trigger for nir induction is not NO itself, but rather an intracellularly generated derivative. Our findings have important implications for understanding the regulatory network controlling the transition to anaerobic respiration.

References

  1. Bergaust, L., Y. Mao, L. R. Bakken, and ��. Frosteg��rd. 2010. ���Denitrification Response Patterns During the Transition to Anoxic Respiration and Posttranscriptional Effects of Suboptimal pH on Nitrous [Corrected] Oxide Reductase in Paracoccus Denitrificans.��� Applied and Environmental Microbiology 76, no. 19: 6387���6396.
  2. Bergaust, L., R. J. van Spanning, ��. Frosteg��rd, and L. R. Bakken. 2012. ���Expression of Nitrous Oxide Reductase in Paracoccus Denitrificans is Regulated by Oxygen and Nitric Oxide Through FnrP and NNR.��� Microbiology 158, no. pt 3: 826���834.
  3. Bergaust, L. L. 2009. Regulatory Biology of Denitrification in Agrobacterium Tumefaciens and Paracoccus Denitrificans: Responses to Environmental Controllers. Norwegian University of Life Sciences, Department of Chemistry, Biotechnology and Food Science.
  4. Bleier, L., and S. Dr��se. 2013. ���Superoxide Generation by Complex III: From Mechanistic Rationales to Functional Consequences.��� Biochimica et Biophysica Acta 1827: 1320���1331.
  5. Bodenmiller, D. M., and S. Spiro. 2006. ���The yjeB (nsrR) Gene of Escherichia coli Encodes a Nitric Oxide Sensitive Transcriptional Regulator.��� Journal of Bacteriology 188: 874���881.
  6. Booth, I. R. 1985. ���Regulation of Cytoplasmic pH in Bacteria.��� Microbiological Reviews 49, no. 4: 359���378.
  7. Buerk, D. G., K. Lamkin���Kennard, and D. Jaron. 2003. ���Modelling the Influence of Superoxide Dismutase on Superoxide and Nitric Oxide Interactions, Including Reversible Inhibition of Oxygen Consumption.��� Free Radical Biology & Medicine 34, no. 11: 1488���1503.
  8. Castiglione, N., S. Rinaldo, G. Giardina, and F. Cutruzzol��. 2009. ���The Transcription Factor DNR From Pseudomonas aeruginosa Specifically Requires Nitric Oxide and Haem for the Activation of a Target Promoter in Escherichia coli.��� Microbiology 155, no. 9: 2838���2844.
  9. Cole, J. A. 2021. ���Anaerobic Bacterial Response to Nitric Oxide Stress: Widespread Misconceptions and Physiologically Relevant Responses.��� Molecular Microbiology 116: 29���40.
  10. Crack, J. C., B. K. Balasiny, S. P. Bennett, et al. 2022. ���The Di���Iron Protein YtfE Is a Nitric Oxide���Generating Nitrite Reductase Involved in the Management of Nitrosative Stress.��� Journal of the American Chemical Society 144: 7129���7145.
  11. Cutruzzol��, F., A. Arcovito, G. Giardina, S. Della Longa, P. D'Angelo, and S. Rinaldo. 2014. ���Distal���Proximal Crosstalk in the Heme Binding Pocket of the NO Sensor DNR.��� Biometals 27: 763���773.
  12. Ebert, M., P. Schweyen, M. Br��ring, S. Laass, E. H��rtig, and D. Jahn. 2017. ���Heme and Nitric Oxide Binding by the Transcriptional Regulator DnrF From the Marine Bacterium Dinoroseobacter Shibae Increases napD Promoter Affinity.��� Journal of Biological Chemistry 292, no. 37: 15468���15480.
  13. Gaimster, H., M. Alston, D. J. Richardson, A. J. Gates, and G. Rowley. 2018. ���Transcriptional and Environmental Control of Bacterial Denitrification and N2O Emissions.��� FEMS Microbiology Letters 365, no. 5: fnx277.
  14. Gaimster, H., C. L. Hews, R. Griffiths, et al. 2019. ���A Central Small RNA Regulatory Circuit Controlling Bacterial Denitrification and N2O Emissions.��� MBio 10, no. 4: e01165���19.
  15. Gardner, A. M., and P. R. Gardner. 2002. ���Flavohemoglobin Detoxifies Nitric Oxide in Aerobic, but Not Anaerobic, Escherichia coli: Evidence for a Novel Inducible Anaerobic Nitric Oxide���Scavenging Activity.��� Journal of Biological Chemistry 277, no. 10: 8166���8171.
  16. Gardner, P. R., A. M. Gardner, W. T. Brashear, et al. 2006. ���Hemoglobins Dioxygenate Nitric Oxide With High Fidelity.��� Journal of Inorganic Biochemistry 100, no. 4: 542���550.
  17. Gardner, P. R., A. M. Gardner, L. A. Martin, and A. L. Salzman. 1998. ���Nitric Oxide Dioxygenase: An Enzymic Function for Flavohemoglobin.��� Proceedings of the National Academy of Sciences 95, no. 18: 10378���10383.
  18. Hahnke, S. M., P. Moosmann, T. J. Erb, and M. Strous. 2014. ���An Improved Medium for the Anaerobic Growth of Paracoccus Denitrificans Pd1222.��� Frontiers in Microbiology 5: 18.
  19. Hartop, K. R., M. J. Sullivan, G. Giannopoulos, et al. 2017. ���The Metabolic Impact of Extracellular Nitrite on Aerobic Metabolism of Paracoccus Denitrificans.��� Water Research 113: 207���214.
  20. Hassan, J., L. Bergaust, L. Molstad, S. de Vries, and L. R. Bakken. 2016. ���Homeostatic Control of Nitric Oxide (NO) at Nanomolar Concentrations in Denitrifying Bacteria ��� Modelling and Experimental Determination of NO Reductase Kinetics In Vivo in Paracoccus Denitrificans.��� Environmental Microbiology 18: 2964���2978.
  21. Hassan, J., L. L. Bergaust, I. D. Wheat, and L. R. Bakken. 2014. ���Low Probability of Initiating nirS Transcription Explains Observed Gas Kinetics and Growth of Bacteria Switching From Aerobic Respiration to Denitrification.��� PLoS Computational Biology 10, no. 11: e1003933.
  22. H��jberg, O., S. J. Binnerup, and J. Sorensen. 1997. ���Growth of Silicone���Immobilized Bacteria on Polycarbonate Membrane Filters, a Technique to Study Microcolony Formation Under Anaerobic Conditions.��� Applied and Environmental Microbiology 63, no. 7: 2920���2924.
  23. Hutchings, M. I., and S. Spiro. 2000. ���The Nitric Oxide Regulated nor Promoter of Paracoccus Denitrificans.��� Microbiology 146, no. Pt 10: 2635���2641.
  24. Kellermann, R., K. Hauge, R. Tjaland, S. Thalmann, L. R. Bakken, and L. Bergaust. 2022. ���Preparation for Denitrification and Phenotypic Diversification at the Cusp of Anoxia: A Purpose for N2O Reductase Vis���a���Vis Multiple Roles of O2.��� Applied and Environmental Microbiology 88, no. 21: e01053���22.
  25. Kim, S. O., Y. Orii, D. Lloyd, M. N. Hughes, and R. K. Poole. 1999. ���Anoxic Function for the Escherichia coli Flavohaemoglobin (Hmp): Reversible Binding of Nitric Oxide and Reduction to Nitrous Oxide.��� FEBS Letters 445, no. 2���3: 389���394.
  26. Kumar, S., and S. Spiro. 2017. ���Environmental and Genetic Determinants of Biofilm Formation in Paracoccus Denitrificans.��� mSphere 2: e00350���17.
  27. Lancaster, J. R. 2006. ���Nitroxidative, Nitrosative, and Nitrative Stress: Kinetic Predictions of Reactive Nitrogen Species Chemistry Under Biological Conditions.��� Chemical Research in Toxicology 19: 1160���1174.
  28. Lee, Y.���Y., N. Shearer, and S. Spiro. 2006. ���Transcription Factor NNR From Paracoccus Denitrificans is a Sensor of Both Nitric Oxide and Oxygen: Isolation of Nnr* Alleles Encoding Effector���Independent Proteins and Evidence for a Haem���Based Sensing Mechanism.��� Microbiology 152: 1461���1470.
  29. Lim, C. H., P. C. Dedon, and W. M. Deen. 2008. ���Kinetic Analysis of Intracellular Concentrations of Reactive Nitrogen Species.��� Chemical Research in Toxicology 21: 2134���2147.
  30. Lobato, L., L. Bouzhir���Sima, T. Yamashita, M. T. Wilson, M. H. Vos, and U. Liebl. 2014. ���Dynamics of the Heme���Binding Bacterial Gas���Sensing Dissimilative Nitrate Respiration Regulator (DNR) and Activation Barriers for Ligand Binding and Escape.��� Journal of Biological Chemistry 289, no. 38: 26514���26524.
  31. Lycus, P., M. J. Soriano���Laguna, M. Kjos, et al. 2018. ���A Bet���Hedging Strategy for Denitrifying Bacteria Curtails Their Release of N2O.��� Proceedings of the National Academy of Sciences of the United States of America 115, no. 46: 11820���11825.
  32. Maragos, C. M., D. Morley, D. A. Wink, et al. 1991. ���Complexes of. NO With Nucleophiles as Agents for the Controlled Biological Release of Nitric Oxide. Vasorelaxant Effects.��� Journal of Medicinal Chemistry 34: 3242���3247.
  33. Miller, J. H. 1992. A Short Course in Bacterial Genetics. Cold Spring Harbor Laboratory Press.
  34. Molstad, L., P. D��rsch, and L. Bakken. 2016. Improved Robotized Incubation System for Gas Kinetics in Batch Cultures. Researchgate. https://doi.org/10.13140/RG.2.2.30688.07680.
  35. Molstad, L., P. Dorsch, and L. R. Bakken. 2007. ���Robotized Incubation System for Monitoring Gases (O2, NO, N2O N2) in Denitrifying Cultures.��� Journal of Microbiological Methods 71, no. 3: 202���211.
  36. Qu, Z., L. R. Bakken, L. Molstad, ��. Frosteg��rd, and L. L. Bergaust. 2016. ���Transcriptional and Metabolic Regulation of Denitrification in Paracoccus Denitrificans Allows Low but Significant Activity of Nitrous Oxide Reductase Under Oxic Conditions.��� Environmental Microbiology 18, no. 9: 2951���2963.
  37. Rinaldo, S., N. Castiglione, G. Giardina, et al. 2012. ���Unusual Heme Binding Properties of the Dissimilative Nitrate Respiration Regulator, a Bacterial Nitric Oxide Sensor.��� Antioxidants & Redox Signaling 17, no. 9: 1178���1189.
  38. Rodionov, D. A., I. L. Dubchak, A. P. Arkin, E. J. Alm, and M. S. Gelfand. 2005. ���Dissimilatory Metabolism of Nitrogen Oxides in Bacteria: Comparative Reconstruction of Transcriptional Networks.��� PLoS Computational Biology 1, no. 5: 415���431.
  39. Sarewicz, M., A. Borek, E. Cieluch, M. ��wierczek, and A. Osyczka. 2010. ���Discrimination Between Two Possible Reaction Sequences That Create Potential Risk of Generation of Deleterious Radicals by Cytochrome bc1 Implications for the Mechanism of Superoxide Production.��� Biochimica et Biophysica Acta 1797: 1820���1827.
  40. Saunders, N. F., E. N. Houben, S. Koefoed, et al. 1999. ���Transcription Regulation of the Nir Gene Cluster Encoding Nitrite Reductase of Paracoccus Denitrificans Involves NNR and NirI, a Novel Type of Membrane Protein.��� Molecular Microbiology 34, no. 1: 24���36.
  41. Sch��fer, A., A. Tauch, W. Jager, J. Kalinowski, G. Thierbach, and A. Puhler. 1994. ���Small Mobilizable Multipurpose Cloning Vectors Derived From the Escherichia coli Plasmids Pk18 and Pk19 ��� Selection of Defined Deletions in the Chromosome of Corynebacterium Glutamicum.��� Gene 145, no. 1: 69���73.
  42. Shepherd, M., D. Giordano, C. Verde, and R. K. Poole. 2022. ���The Evolution of Nitric Oxide Function: From Reactivity in the Prebiotic Earth to Examples of Biological Roles and Therapeutic Applications.��� Antioxidants 11, no. 7: 1222.
  43. Silva, L. S. O., P. M. Matias, C. V. Rom��o, and L. M. Saraiva. 2022. ���Repair of Iron Center Proteins���A Different Class of Hemerythrin���Like Proteins.��� Molecules 27: 4051.
  44. Sistrom, W. R. 1960. ���A Requirement for Sodium in the Growth of Rhodopseudomonas Spheroides.��� Microbiology 22, no. 3: 778���785.
  45. Sistrom, W. R. 1962. ���Observations on the Relationship Between the Formation of Photopigments and the Synthesis of Protein in Rhodopseudomonas Spheroides.��� Microbiology 28, no. 4: 599���605.
  46. Spiro, S. 2012. ���Nitrous Oxide Production and Consumption: Regulation of Gene Expression by Gas���Sensitive Transcription Factors.��� Philosophical Transactions of the Royal Society 367, no. 1593: 1213���1225.
  47. Su, J., and J. T. Groves. 2010. ���Mechanisms of Peroxynitrite Interactions With Heme Proteins.��� Inorganic Chemistry 49, no. 14: 6317���6329.
  48. Subczynski, W. K., M. Lomnicka, and J. S. Hyde. 1996. ���Permeability of Nitric Oxide Through Lipid Bilayer Membranes.��� Free Radical Research 24, no. 5: 343���349.
  49. Sullivan, M. J., A. J. Gates, C. Appia���Ayme, G. Rowley, and D. J. Richardson. 2013. ���Copper Control of Bacterial Nitrous Oxide Emission and its Impact on Vitamin B12���Dependent Metabolism.��� Proceedings of the National Academy of Sciences of the United States of America 110: 19926���19931.
  50. Van Spanning, R. J., E. Houben, W. N. Reijnders, S. Spiro, H. V. Westerhoff, and N. Saunders. 1999. ���Nitric Oxide is a Signal for NNR���Mediated Transcription Activation in Paracoccus Denitrificans.��� Journal of Bacteriology 181, no. 13: 4129���4132.
  51. Van Spanning, R. J. M., D. J. Richardson, and S. J. Ferguson. 2007. ���Introduction to the Biochemistry and Molecular Biology of Denitrification.��� In Biology of the Nitrogen Cycle, edited by D. J. Richardson and S. J. Ferguson, 3���20. Elsevier.
  52. Wood, N. J., T. Alizadeh, S. Bennett, et al. 2001. ���Maximal Expression of Membrane���Bound Nitrate Reductase in Paracoccus is Induced by Nitrate via a Third FNR���Like Regulator Named NarR.��� Journal of Bacteriology 183, no. 12: 3606���3613.
  53. Yin, Y., S. Tso, C. Yu, and L. Yu. 2009. ���Effect of Subunit IV on Superoxide Generation by Rhodobacter Sphaeroides Cytochrome bc1 Complex.��� Biochimica et Biophysica Acta 1787: 913���919.
  54. Zumft, W. G. 1997. ���Cell Biology and Molecular Basis of Denitrification.��� Microbiology and Molecular Biology Reviews 61, no. 4: 533���616.

Grants

  1. BB/M00256X/1/Biotechnology and Biological Sciences Research Council
  2. BB/S008942/1/Biotechnology and Biological Sciences Research Council
  3. 275389/F20/Norges Forskningsr��d
  4. NNF21OC0067044/Novo Nordisk Fonden

MeSH Term

Paracoccus denitrificans
Nitric Oxide
Gene Expression Regulation, Bacterial
Bacterial Proteins
Oxidoreductases
Signal Transduction
Denitrification
Hemeproteins
Anaerobiosis
Nitrites

Chemicals

Nitric Oxide
nitric-oxide reductase
Bacterial Proteins
Oxidoreductases
Hemeproteins
Nitrites
flavohemoprotein, Bacteria

Word Cloud

Created with Highcharts 10.0.0NOnirHmpoxideexpressionbet-hedgingnitricanaerobicrespirationsignalParacoccusdenitrificansscavenginginductionclearwildtypedenitrifyingbacteriaelectronacceptorfreeintermediateproducedalsotranscriptionalregulationgenesencodingnitriteNirnitrousreductasesNORhypothesisetimingstrengthnecessaryfullkeyfactorsstrategysystemshypoxiareduceprobabilityshowflavohemoglobinscavengesaerobiccultureshmpregulatedNsrR-typerepressorUsingstrainmCherry-nirSfusionfoundnegativeeffectinitialDeletionnorCBeliminatedelevatedlevelsco-culturesabolishcellsresultsdemonstraterolesregulatingnirSsuggestingtriggerratherintracellularlygeneratedderivativefindingsimportantimplicationsunderstandingregulatorynetworkcontrollingtransitionFlavohemoglobinNitricOxideReductaseRestrictInitialExpressionBet-HedgingDenitrifierCurtailingHypoxicSignalling

Similar Articles

Cited By