Large Filamentous Bacteria Isolated From Sulphidic Sediments Reveal Novel Species and Distinct Energy and Defence Mechanisms for Survival.

Alexis Fonseca, Thomas Ishoey, Carola Espinoza, Ian P G Marshall, Lars Peter Nielsen, Victor Ariel Gallardo
Author Information
  1. Alexis Fonseca: Center for Electromicrobiology, Department of Biology, Aarhus University, Aarhus, Denmark. ORCID
  2. Thomas Ishoey: J. Craig Venter Institute, La Jolla, California, USA.
  3. Carola Espinoza: Department of Oceanography, University of Concepci��n, Concepci��n, Chile.
  4. Ian P G Marshall: Center for Electromicrobiology, Department of Biology, Aarhus University, Aarhus, Denmark. ORCID
  5. Lars Peter Nielsen: Center for Electromicrobiology, Department of Biology, Aarhus University, Aarhus, Denmark. ORCID
  6. Victor Ariel Gallardo: Department of Oceanography, University of Concepci��n, Concepci��n, Chile. ORCID

Abstract

Various morphotypes of large filamentous bacteria were isolated through micromanipulation from sulphidic sediment mats in the Bay of Concepci��n, central Chile. This study employed DNA amplification, whole-genome sequencing and bioinformatics analyses to unveil the taxonomic and genomic features of previously unidentified bacteria. The results revealed several novel genera, families and species, including three specimens belonging to Beggiatoales (Beggiatoaceae family), five to Desulfobacterales (Desulfobacteraceae family), two to the Chloroflexi phylum and one to the phylum Firmicutes. Metabolically, Beggiatoaceae bacteria exhibit a flexible and versatile genomic repertoire, enabling them to adapt to variable conditions at the sediment-water interface. All the bacteria demonstrated a mixotrophic mode, gaining energy from both inorganic and organic carbon sources. Except for the Firmicutes bacterium, all others displayed the ability to grow chemolithoautotrophically using H and CO. Remarkably, the reverse tricarboxylic acid (rTCA) and Calvin-Benson-Bassham (CBB) pathways coexisted in one Beggiatoaceae bacterium. Additionally, various defence systems, such as CRISPR-Cas, along with evidence of viral interactions, have been identified. These defence mechanisms suggest that large filamentous bacteria inhabiting sulphidic sediments frequently encounter bacteriophages. Thus, robust defence mechanisms coupled with multicellularity may determine the survival or death of these large bacteria.

Keywords

References

  1. PLoS Biol. 2007 Sep;5(9):e230 [PMID: 17760503]
  2. Bioinformatics. 2014 May 1;30(9):1236-40 [PMID: 24451626]
  3. Front Microbiol. 2016 Jun 17;7:919 [PMID: 27379049]
  4. Bioinformatics. 2015 Oct 1;31(19):3210-2 [PMID: 26059717]
  5. Nat Rev Microbiol. 2014 Sep;12(9):635-45 [PMID: 25118885]
  6. Annu Rev Microbiol. 2000;54:827-48 [PMID: 11018146]
  7. Annu Rev Microbiol. 2001;55:105-37 [PMID: 11544351]
  8. Front Microbiol. 2021 Apr 01;12:664299 [PMID: 33868219]
  9. Front Microbiol. 2018 Feb 19;9:260 [PMID: 29515543]
  10. Front Microbiol. 2019 Apr 24;10:849 [PMID: 31105660]
  11. Microb Ecol. 1979 Jun;5(2):105-15 [PMID: 24232417]
  12. Cell Cycle. 2014;13(19):3083-8 [PMID: 25486567]
  13. Philos Trans R Soc Lond B Biol Sci. 2006 Jun 29;361(1470):869-85 [PMID: 16754604]
  14. ISME J. 2015 May;9(5):1152-65 [PMID: 25343514]
  15. PeerJ. 2019 Jul 26;7:e7359 [PMID: 31388474]
  16. Front Microbiol. 2019 Sep 13;10:2015 [PMID: 31572309]
  17. Nat Microbiol. 2022 Oct;7(10):1702-1708 [PMID: 36123442]
  18. Microbiome. 2022 May 10;10(1):75 [PMID: 35538590]
  19. Bioinformatics. 2022 Nov 30;38(23):5315-5316 [PMID: 36218463]
  20. Appl Environ Microbiol. 2001 Dec;67(12):5530-7 [PMID: 11722903]
  21. FEBS Lett. 2007 Aug 7;581(20):3805-8 [PMID: 17659281]
  22. Syst Appl Microbiol. 2011 Jun;34(4):243-59 [PMID: 21498017]
  23. Genome Biol. 2021 Mar 10;22(1):81 [PMID: 33691770]
  24. Arch Microbiol. 1978 Jan 23;116(1):41-9 [PMID: 623496]
  25. Int Microbiol. 2007 Jun;10(2):97-102 [PMID: 17661287]
  26. Nat Rev Microbiol. 2020 Feb;18(2):113-119 [PMID: 31695182]
  27. Nat Microbiol. 2017 Nov;2(11):1533-1542 [PMID: 28894102]
  28. Nucleic Acids Res. 2020 Jan 8;48(D1):D535-D544 [PMID: 31624845]
  29. Nucleic Acids Res. 2018 Jul 2;46(W1):W282-W288 [PMID: 29905870]
  30. mSphere. 2019 Jan 2;4(1): [PMID: 30602523]
  31. Front Microbiol. 2016 May 03;7:603 [PMID: 27199933]
  32. Water Sci Technol. 2002;46(1-2):535-42 [PMID: 12216683]
  33. Biochim Biophys Acta. 2008 Dec;1784(12):1873-98 [PMID: 18801467]
  34. PLoS One. 2017 Dec 13;12(12):e0188371 [PMID: 29236755]
  35. Nucleic Acids Res. 2019 Jul 2;47(W1):W74-W80 [PMID: 31114893]
  36. Nat Rev Microbiol. 2008 Feb;6(2):162-8 [PMID: 18157153]
  37. Curr Opin Microbiol. 2008 Jun;11(3):198-204 [PMID: 18550420]
  38. FEMS Microbiol Ecol. 2007 Jan;59(1):10-22 [PMID: 17069623]
  39. Mol Biol Evol. 2020 May 1;37(5):1530-1534 [PMID: 32011700]
  40. J Comput Biol. 2012 May;19(5):455-77 [PMID: 22506599]
  41. Science. 2008 Aug 15;321(5891):960-4 [PMID: 18703739]
  42. Front Microbiol. 2016 Jun 21;7:964 [PMID: 27446006]
  43. Appl Environ Microbiol. 1981 Jul;42(1):5-11 [PMID: 16345815]
  44. ISME J. 2016 Sep;10(9):2223-34 [PMID: 26905629]
  45. J Mol Biol. 2016 Feb 22;428(4):726-731 [PMID: 26585406]
  46. Genome Res. 2015 Jul;25(7):1043-55 [PMID: 25977477]
  47. Microb Physiol. 2021 Feb 19;:1-20 [PMID: 33611323]
  48. Proc Natl Acad Sci U S A. 2019 Sep 17;116(38):19116-19125 [PMID: 31427514]
  49. Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):19126-31 [PMID: 19855009]
  50. Front Microbiol. 2022 Sep 30;13:1016418 [PMID: 36246233]
  51. Syst Appl Microbiol. 2022 Sep;45(5):126305 [PMID: 36049255]
  52. J Bacteriol. 2006 Aug;188(15):5460-8 [PMID: 16855235]
  53. Nat Commun. 2022 May 10;13(1):2561 [PMID: 35538097]
  54. Bioinformatics. 2014 Jul 15;30(14):2068-9 [PMID: 24642063]
  55. Arch Microbiol. 1999 Oct;172(4):193-203 [PMID: 10525735]

Grants

  1. /the Program "Doctorado en el extranjero Becas Chile" from ANID (former CONICYT)
  2. 1070552/Agencia Nacional de Investigaci��n y Desarrollo
  3. /J. Craig Venter Institute

MeSH Term

Geologic Sediments
Chile
Phylogeny
Bacteria
Genome, Bacterial
RNA, Ribosomal, 16S
Deltaproteobacteria
Sulfides

Chemicals

RNA, Ribosomal, 16S
Sulfides

Word Cloud

Created with Highcharts 10.0.0bacterialargedefencefilamentousBeggiatoaceaesulphidicgenomicfamilyphylumoneFirmicutesbacteriummechanismssedimentsbacterialVariousmorphotypesisolatedmicromanipulationsedimentmatsBayConcepci��ncentralChilestudyemployedDNAamplificationwhole-genomesequencingbioinformaticsanalysesunveiltaxonomicfeaturespreviouslyunidentifiedresultsrevealedseveralnovelgenerafamiliesspeciesincludingthreespecimensbelongingBeggiatoalesfiveDesulfobacteralesDesulfobacteraceaetwoChloroflexiMetabolicallyexhibitflexibleversatilerepertoireenablingadaptvariableconditionssediment-waterinterfacedemonstratedmixotrophicmodegainingenergyinorganicorganiccarbonsourcesExceptothersdisplayedabilitygrowchemolithoautotrophicallyusingHCORemarkablyreversetricarboxylicacidrTCACalvin-Benson-BasshamCBBpathwayscoexistedAdditionallyvarioussystemsCRISPR-CasalongevidenceviralinteractionsidentifiedsuggestinhabitingfrequentlyencounterbacteriophagesThusrobustcoupledmulticellularitymaydeterminesurvivaldeathLargeFilamentousBacteriaIsolatedSulphidicSedimentsRevealNovelSpeciesDistinctEnergyDefenceMechanismsSurvivalCRISPR���Casgenomicssulfuretumsulphur

Similar Articles

Cited By