Metagenome-Assembled Genomes for Oligotrophic Nitrifiers From a Mountainous Gravelbed Floodplain.

Anna N Rasmussen, Bradley B Tolar, John R Bargar, Kristin Boye, Christopher A Francis
Author Information
  1. Anna N Rasmussen: Department of Earth System Science, Stanford University, Stanford, California, USA.
  2. Bradley B Tolar: Department of Earth System Science, Stanford University, Stanford, California, USA. ORCID
  3. John R Bargar: Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA.
  4. Kristin Boye: Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, USA.
  5. Christopher A Francis: Department of Earth System Science, Stanford University, Stanford, California, USA. ORCID

Abstract

Riparian floodplains are important regions for biogeochemical cycling, including nitrogen. Here, we present MAGs from nitrifying microorganisms, including ammonia-oxidising archaea (AOA) and comammox bacteria from Slate River (SR) floodplain sediments (Crested Butte, CO, US). Additionally, we explore MAGs from potential nitrite-oxidising bacteria (NOB) from the Nitrospirales. AOA diversity in SR is lower than observed in other western US floodplain sediments and Nitrosotalea-like lineages such as the genus TA-20 are the dominant AOA. No ammonia-oxidising bacteria (AOB) MAGs were recovered. Microorganisms from the Palsa-1315 genus (clade B comammox) are the most abundant ammonia-oxidizers in SR floodplain sediments. Established NOB are conspicuously absent; however, we recovered MAGs from uncultured lineages of the NS-4 family (Nitrospirales) and Nitrospiraceae that we propose as putative NOB. Nitrite oxidation may be carried out by organisms sister to established Nitrospira NOB lineages based on the genomic content of uncultured Nitrospirales clades. Nitrifier MAGs recovered from SR floodplain sediments harbour genes for using alternative sources of ammonia, such as urea, cyanate, biuret, triuret and nitriles. The SR floodplain therefore appears to be a low ammonia flux environment that selects for oligotrophic nitrifiers.

Keywords

References

  1. Alneberg, J., B. S. Bjarnason, I. de Bruijn, et al. 2013. CONCOCT: Clustering cONtigs on COverage and ComposiTion. arXiv:13124038 [q���bio].
  2. Altmann, D., P. Stief, R. Amann, D. De Beer, and A. Schramm. 2003. ���In Situ Distribution and Activity of Nitrifying Bacteria in Freshwater Sediment.��� Environmental Microbiology 5: 798���803.
  3. Auguet, J.���C., and E. O. Casamayor. 2013. ���Partitioning of Thaumarchaeota Populations Along Environmental Gradients in High Mountain Lakes.��� FEMS Microbiology Ecology 84: 154���164.
  4. Auguet, J.���C., N. Nomokonova, L. Camarero, and E. O. Casamayor. 2011. ���Seasonal Changes of Freshwater Ammonia���Oxidizing Archaeal Assemblages and Nitrogen Species in Oligotrophic Alpine Lakes.��� Applied and Environmental Microbiology 77: 1937���1945.
  5. Aukema, K. G., L. J. Tassoulas, S. L. Robinson, J. F. Konopatski, M. D. Bygd, and L. P. Wackett. 2020. ���Cyanuric Acid Biodegradation via Biuret: Physiology, Taxonomy, and Geospatial Distribution.��� Applied and Environmental Microbiology 86: e01964���19.
  6. Barnum, T. P., and J. D. Coates. 2023. ���Chlorine Redox Chemistry Is Widespread in Microbiology.��� ISME Journal 17: 70���83.
  7. Bayer, B., M. A. Saito, M. R. McIlvin, et al. 2021. ���Metabolic Versatility of the Nitrite���Oxidizing Bacterium Nitrospira Marina and Its Proteomic Response to Oxygen���Limited Conditions.��� ISME Journal 15: 1025���1039.
  8. Bento, M. d. S., D. J. Barros, M. G. d. S. Ara��jo, et al. 2021. ���Active Methane Processing Microbes and the Disproportionate Role of NC10 Phylum in Methane Mitigation in Amazonian Floodplains.��� Biogeochemistry 156: 293���317.
  9. Bollmann, A., G. S. Bullerjahn, and R. M. McKay. 2014. ���Abundance and Diversity of Ammonia���Oxidizing Archaea and Bacteria in Sediments of Trophic End Members of the Laurentian Great Lakes, Erie and Superior.��� PLoS One 9: e97068.
  10. Cantalapiedra, C. P., A. Hern��ndez���Plaza, I. Letunic, P. Bork, and J. Huerta���Cepas. 2021. ���eggNOG���Mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale.��� Molecular Biology and Evolution 38: 5825���5829.
  11. Capella���Guti��rrez, S., J. M. Silla���Mart��nez, and T. Gabald��n. 2009. ���trimAl: A Tool for Automated Alignment Trimming in Large���Scale Phylogenetic Analyses.��� Bioinformatics 25: 1972���1973.
  12. Cardarelli, E. L., J. R. Bargar, and C. A. Francis. 2020. ���Diverse Thaumarchaeota Dominate Subsurface Ammonia���Oxidizing Communities in Semi���Arid Floodplains in the Western United States.��� Microbial Ecology 80: 778���792.
  13. Chaumeil, P.���A., A. J. Mussig, P. Hugenholtz, and D. H. Parks. 2020. ���GTDB���Tk: A Toolkit to Classify Genomes With the Genome Taxonomy Database.��� Bioinformatics 36: 1925���1927.
  14. Costa, E., J. P��rez, and J.���U. Kreft. 2006. ���Why is Metabolic Labour Divided in Nitrification?��� Trends in Microbiology 14: 213���219.
  15. Crits���Christoph, A., S. Diamond, C. N. Butterfield, B. C. Thomas, and J. F. Banfield. 2018. ���Novel Soil Bacteria Possess Diverse Genes for Secondary Metabolite Biosynthesis.��� Nature 558: 440���444.
  16. Daims, H., E. V. Lebedeva, P. Pjevac, et al. 2015. ���Complete Nitrification by Nitrospira Bacteria.��� Nature 528: 504���509.
  17. Daims, H., J. L. Nielsen, P. H. Nielsen, K.���H. Schleifer, and M. Wagner. 2001. ���In Situ Characterization of Nitrospira���Like Nitrite���Oxidizing Bacteria Active in Wastewater Treatment Plants.��� Applied and Environmental Microbiology 67: 5273���5284.
  18. Daims, H., S. L��cker, and M. Wagner. 2016. ���A New Perspective on Microbes Formerly Known as Nitrite���Oxidizing Bacteria.��� Trends in Microbiology 24: 699���712.
  19. Dewey, C., J. R. Bargar, and S. Fendorf. 2021. ���Porewater Lead Concentrations Limited by Particulate Organic Matter Coupled With Ephemeral Iron(III) and Sulfide Phases During Redox Cycles Within Contaminated Floodplain Soils.��� Environmental Science & Technology 55: 5878���5886.
  20. Diamond, S., P. F. Andeer, Z. Li, et al. 2019. ���Mediterranean Grassland Soil C���N Compound Turnover Is Dependent on Rainfall and Depth, and Is Mediated by Genomically Divergent Microorganisms.��� Nature Microbiology 4: 1356���1367.
  21. Edgar, R. C. 2004. ���MUSCLE: Multiple Sequence Alignment With High Accuracy and High Throughput.��� Nucleic Acids Research 32: 1792���1797.
  22. Eren, A. M., ��. C. Esen, C. Quince, et al. 2015. ���Anvi'o: An Advanced Analysis and Visualization Platform for ���Omics Data.��� PeerJ 3: e1319.
  23. Gao, F., Y. Li, H. Fan, J. Xue, and H. Yao. 2023. ���Main Environmental Drivers of Abundance, Diversity, and Community Structure of Comammox Nitrospira in Paddy Soils.��� Pedosphere 33: 808���818.
  24. Gao, W., Y. Fu, C. Fan, et al. 2023. ���Factors Predictive of the Biogeographic Distribution of Comammox Nitrospira in Terrestrial Ecosystems.��� Soil Biology and Biochemistry 184: 109079.
  25. Gersch, C., S. P. Palii, W. Imaram, et al. 2009. ���Reactions of Peroxynitrite With Uric Acid: Formation of Reactive Intermediates, Alkylated Products and Triuret, and In Vivo Production of Triuret Under Conditions of Oxidative Stress.��� Nucleosides, Nucleotides & Nucleic Acids 28: 118���149.
  26. Gontijo, J. B., F. S. Paula, A. M. Venturini, et al. 2021. ���Not Just a Methane Source: Amazonian Floodplain Sediments Harbour a High Diversity of Methanotrophs With Different Metabolic Capabilities.��� Molecular Ecology 30: 2560���2572.
  27. Gubry���Rangin, C., B. Hai, C. Quince, et al. 2011. ���Niche Specialization of Terrestrial Archaeal Ammonia Oxidizers.��� Proceedings of the National Academy of Sciences 108: 21206���21211.
  28. Gubry���Rangin, C., G. W. Nicol, and J. I. Prosser. 2010. ���Archaea Rather Than Bacteria Control Nitrification in Two Agricultural Acidic Soils.��� FEMS Microbiology Ecology 74: 566���574.
  29. Han, P., X. Tang, H. Koch, et al. 2024. ���Unveiling Unique Microbial Nitrogen Cycling and Nitrification Driver in Coastal Antarctica.��� Nature Communications 15: 3143.
  30. Herrmann, M., A. M. Saunders, and A. Schramm. 2009. ���Effect of Lake Trophic Status and Rooted Macrophytes on Community Composition and Abundance of Ammonia���Oxidizing Prokaryotes in Freshwater Sediments.��� Applied and Environmental Microbiology 75: 3127���3136.
  31. Hink, L., C. Gubry���Rangin, G. W. Nicol, and J. I. Prosser. 2018. ���The Consequences of Niche and Physiological Differentiation of Archaeal and Bacterial Ammonia Oxidisers for Nitrous Oxide Emissions.��� ISME Journal 12: 1084���1093.
  32. Hochstein, L. I., and G. A. Tomlinson. 1988. ���The Enzymes Associated With Denitrification.��� Annual Review of Microbiology 42: 231���261.
  33. Huerta���Cepas, J., D. Szklarczyk, D. Heller, et al. 2019. ���eggNOG 5.0: A Hierarchical, Functionally and Phylogenetically Annotated Orthology Resource Based on 5090 Organisms and 2502 Viruses.��� Nucleic Acids Research 47: D309���D314.
  34. Hug, L. A., B. C. Thomas, I. Sharon, et al. 2016. ���Critical Biogeochemical Functions in the Subsurface Are Associated With Bacteria From New Phyla and Little Studied Lineages.��� Environmental Microbiology 18: 159���173.
  35. Hyatt, D., G.���L. Chen, P. F. LoCascio, M. L. Land, F. W. Larimer, and L. J. Hauser. 2010. ���Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification.��� BMC Bioinformatics 11: 119.
  36. Hynes, R. K., and R. Knowles. 1983. ���Inhibition of Chemoautotrophic Nitrification by Sodium Chlorate and Sodium Chlorite: A Reexamination.��� Applied and Environmental Microbiology 45: 1178���1182.
  37. Jain, C., L. M. Rodriguez���R, A. M. Phillippy, K. T. Konstantinidis, and S. Aluru. 2018. ���High Throughput ANI Analysis of 90K Prokaryotic Genomes Reveals Clear Species Boundaries.��� Nature Communications 9: 5114.
  38. Kanehisa, M., Y. Sato, and K. Morishima. 2016. ���BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences.��� Journal of Molecular Biology 428: 726���731.
  39. Kang, D. D., F. Li, E. Kirton, et al. 2019. ���MetaBAT 2: An Adaptive Binning Algorithm for Robust and Efficient Genome Reconstruction From Metagenome Assemblies.��� PeerJ 7: e7359.
  40. Keuter, S., H. Koch, B. Nowka, et al. 2023. ���A Novel Nitrospira Lineage Isolated From Activated Sludge Using Elevated Temperatures.��� FEMS Microbiology Letters 370: fnad035.
  41. Keuter, S., H. Koch, K. Sass, et al. 2022. ���Some Like It Cold: The Cellular Organization and Physiological Limits of Cold���Tolerant Nitrite���Oxidizing Nitrotoga.��� Environmental Microbiology 24: 2059���2077.
  42. Kim, K. M., G. N. Henderson, R. F. Frye, et al. 2009. ���Simultaneous Determination of Uric Acid Metabolites Allantoin, 6���Aminouracil, and Triuret in Human Urine Using Liquid Chromatography���Mass Spectrometry.��� Journal of Chromatography B 877: 65���70.
  43. Kits, K. D., C. J. Sedlacek, E. V. Lebedeva, et al. 2017. ���Kinetic Analysis of a Complete Nitrifier Reveals an Oligotrophic Lifestyle.��� Nature 549: 269���272.
  44. Koch, H., M. A. H. J. Van Kessel, and S. L��cker. 2019. ���Complete Nitrification: Insights Into the Ecophysiology of Comammox Nitrospira.��� Applied Microbiology and Biotechnology 103: 177���189.
  45. Koch, H., S. L��cker, M. Albertsen, et al. 2015. ���Expanded Metabolic Versatility of Ubiquitous Nitrite���Oxidizing Bacteria From the Genus Nitrospira.��� Proceedings of the National Academy of Sciences 112: 11371���11376.
  46. Kostan, J., B. Sj��blom, F. Maixner, et al. 2010. ���Structural and Functional Characterisation of the Chlorite Dismutase From the Nitrite���Oxidizing Bacterium ���Candidatus Nitrospira Defluvii���: Identification of a Catalytically Important Amino Acid Residue.��� Journal of Structural Biology 172: 331���342.
  47. Langmead, B., and S. L. Salzberg. 2012. ���Fast Gapped���Read Alignment With Bowtie 2.��� Nature Methods 9: 357���359.
  48. Lees, H., and J. R. Simpson. 1957. ���The Biochemistry of the Nitrifying Organisms. 5. Nitrite Oxidation by Nitrobacter.��� Biochemical Journal 65: 297.
  49. Letunic, I., and P. Bork. 2024. ���Interactive Tree of Life (iTOL) v6: Recent Updates to the Phylogenetic Tree Display and Annotation Tool.��� Nucleic Acids Research 52: W78���W82.
  50. Leung, P. M., A. Daebeler, E. Chiri, et al. 2022. ���A Nitrite���Oxidising Bacterium Constitutively Consumes Atmospheric Hydrogen.��� ISME Journal 16: 2213���2219.
  51. Li, C., H.���W. Hu, Q.���L. Chen, et al. 2021a. ���Niche Specialization of Comammox Nitrospira Clade A in Terrestrial Ecosystems.��� Soil Biology and Biochemistry 156: 108231.
  52. Li, C., Z.���Y. He, H.���W. Hu, and J.���Z. He. 2023. ���Niche Specialization of Comammox Nitrospira in Terrestrial Ecosystems: Oligotrophic or Copiotrophic?��� Critical Reviews in Environmental Science and Technology 53: 161���176.
  53. Li, J., Z.���S. Hua, T. Liu, et al. 2021b. ���Selective Enrichment and Metagenomic Analysis of Three Novel Comammox Nitrospira in a Urine���Fed Membrane Bioreactor.��� ISME Communications 1: 7.
  54. Liu, S., H. Wang, L. Chen, et al. 2020. ���Comammox Nitrospira Within the Yangtze River Continuum: Community, Biogeography, and Ecological Drivers.��� ISME Journal 14: 2488���2504.
  55. Lu, X., A. E. Taylor, D. D. Myrold, and J. D. Neufeld. 2020. ���Expanding Perspectives of Soil Nitrification to Include Ammonia���Oxidizing Archaea and Comammox Bacteria.��� Soil Science Society of America Journal 84: 287���302.
  56. L��cker, S., M. Wagner, F. Maixner, et al. 2010. ���A Nitrospira Metagenome Illuminates the Physiology and Evolution of Globally Important Nitrite���Oxidizing Bacteria.��� Proceedings of the National Academy of Sciences 107: 13479���13484.
  57. Maixner, F., M. Wagner, S. L��cker, et al. 2008. ���Environmental Genomics Reveals a Functional Chlorite Dismutase in the Nitrite���Oxidizing Bacterium ���Candidatus Nitrospira Defluvii���.��� Environmental Microbiology 10: 3043���3056.
  58. Matheus Carnevali, P. B., A. Lavy, A. D. Thomas, et al. 2021. ���Meanders as a Scaling Motif for Understanding of Floodplain Soil Microbiome and Biogeochemical Potential at the Watershed Scale.��� Microbiome 9: 121.
  59. Minh, B. Q., H. A. Schmidt, O. Chernomor, et al. 2020. ���IQ���TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era.��� Molecular Biology and Evolution 37: 1530���1534.
  60. Mlynek, G., B. Sj��blom, J. Kostan, et al. 2011. ���Unexpected Diversity of Chlorite Dismutases: A Catalytically Efficient Dimeric Enzyme From Nitrobacter winogradskyi.��� Journal of Bacteriology 193: 2408���2417.
  61. Monteiro, G. G. T. N., D. J. Barros, G. V. M. Gabriel, et al. 2022. ���Molecular Evidence for Stimulation of Methane Oxidation in Amazonian Floodplains by Ammonia���Oxidizing Communities.��� Frontiers in Microbiology 13. https://doi.org/10.3389/fmicb.2022.913453.
  62. Mosier, A. C., M. B. Lund, and C. A. Francis. 2012. ���Ecophysiology of an Ammonia���Oxidizing Archaeon Adapted to Low���Salinity Habitats.��� Microbial Ecology 64: 955���963.
  63. Nowka, B., H. Daims, and E. Spieck. 2015. ���Comparison of Oxidation Kinetics of Nitrite���Oxidizing Bacteria: Nitrite Availability as a Key Factor in Niche Differentiation.��� Applied and Environmental Microbiology 81: 745���753.
  64. Olm, M. R., A. Crits���Christoph, K. Bouma���Gregson, B. A. Firek, M. J. Morowitz, and J. F. Banfield. 2021. ���inStrain Profiles Population Microdiversity From Metagenomic Data and Sensitively Detects Shared Microbial Strains.��� Nature Biotechnology 39: 727���736.
  65. Olm, M. R., C. T. Brown, B. Brooks, and J. F. Banfield. 2017. ���dRep: A Tool for Fast and Accurate Genomic Comparisons That Enables Improved Genome Recovery From Metagenomes Through De���Replication.��� ISME Journal 11: 2864���2868.
  66. Palatinszky, M., C. Herbold, N. Jehmlich, et al. 2015. ���Cyanate as an Energy Source for Nitrifiers.��� Nature 524: 105���108.
  67. Palatinszky, M., C. W. Herbold, C. J. Sedlacek, et al. 2024. ���Growth of Complete Ammonia Oxidizers on Guanidine.��� Nature 633: 646���653.
  68. Palomo, A., A. G. Pedersen, S. J. Fowler, A. Dechesne, T. Sicheritz���Pont��n, and B. F. Smets. 2018. ���Comparative Genomics Sheds Light on Niche Differentiation and the Evolutionary History of Comammox Nitrospira.��� ISME Journal 12: 1779���1793.
  69. Parks, D. H., M. Imelfort, C. T. Skennerton, P. Hugenholtz, and G. W. Tyson. 2015. ���CheckM: Assessing the Quality of Microbial Genomes Recovered From Isolates, Single Cells, and Metagenomes.��� Genome Research 25: 1043���1055.
  70. Pinto, A. J., D. N. Marcus, U. Z. Ijaz, Q. M. B. Santos, G. J. Dick, and L. Raskin. 2016. ���Metagenomic Evidence for the Presence of Comammox Nitrospira���Like Bacteria in a Drinking Water System.��� mSphere 1: e00054���15.
  71. Pinto, O. H. B., T. F. Silva, C. S. Vizzotto, et al. 2020. ���Genome���Resolved Metagenomics Analysis Provides Insights Into the Ecological Role of Thaumarchaeota in the Amazon River and Its Plume.��� BMC Microbiology 20: 13.
  72. Poghosyan, L., H. Koch, A. Lavy, et al. 2019. ���Metagenomic Recovery of Two Distinct Comammox Nitrospira From the Terrestrial Subsurface.��� Environmental Microbiology 21: 3627���3637.
  73. Rambaut, A. 2010. FigTree.
  74. Rasmussen, A. N., B. B. Tolar, J. R. Bargar, K. Boye, and C. A. Francis. 2024. ���Diverse and Unconventional Methanogens, Methanotrophs, and Methylotrophs in Metagenome���Assembled Genomes From Subsurface Sediments of the Slate River Floodplain, Crested Butte, CO, USA.��� mSystems 0: e00314���24.
  75. Reed, D. W., J. M. Smith, C. A. Francis, and Y. Fujita. 2010. ���Responses of Ammonia���Oxidizing Bacterial and Archaeal Populations to Organic Nitrogen Amendments in Low���Nutrient Groundwater.��� Applied and Environmental Microbiology 76: 2517���2523.
  76. Reji, L., E. L. Cardarelli, K. Boye, J. R. Bargar, and C. A. Francis. 2022. ���Diverse Ecophysiological Adaptations of Subsurface Thaumarchaeota in Floodplain Sediments Revealed Through Genome���Resolved Metagenomics.��� ISME Journal 16: 1140���1152.
  77. Ren, M., and J. Wang. 2022. ���Phylogenetic Divergence and Adaptation of Nitrososphaeria Across Lake Depths and Freshwater Ecosystems.��� ISME Journal 16: 1491���1501.
  78. Ren, M., X. Feng, Y. Huang, et al. 2019. ���Phylogenomics Suggests Oxygen Availability as a Driving Force in Thaumarchaeota Evolution.��� ISME Journal 13: 2150���2161.
  79. Robinson, S. L., J. P. Badalamenti, A. G. Dodge, L. J. Tassoulas, and L. P. Wackett. 2018. ���Microbial Biodegradation of Biuret: Defining Biuret Hydrolases Within the Isochorismatase Superfamily.��� Environmental Microbiology 20: 2099���2111.
  80. Sakoula, D., H. Koch, J. Frank, M. S. M. Jetten, M. A. H. J. van Kessel, and S. L��cker. 2021. ���Enrichment and Physiological Characterization of a Novel Comammox Nitrospira Indicates Ammonium Inhibition of Complete Nitrification.��� ISME Journal 15: 1010���1024.
  81. Santos���J��nior, C. D., L. T. Kishi, D. Toyama, et al. 2017. ���Metagenome Sequencing of Prokaryotic Microbiota Collected From Rivers in the Upper Amazon Basin.��� Genome Announcements 5: e01450���16.
  82. Shaiber, A., A. D. Willis, T. O. Delmont, et al. 2020. ���Functional and Genetic Markers of Niche Partitioning Among Enigmatic Members of the Human Oral Microbiome.��� Genome Biology 21: 292.
  83. Sheridan, P. O., S. Raguideau, C. Quince, et al. 2020. ���Gene Duplication Drives Genome Expansion in a Major Lineage of Thaumarchaeota.��� Nature Communications 11: 5494.
  84. Sheridan, P. O., Y. Meng, T. A. Williams, and C. Gubry���Rangin. 2023. ���Genomics of Soil Depth Niche Partitioning in the Thaumarchaeota Family Gagatemarchaeaceae.��� Nature Communications 14: 7305.
  85. Sievers, F., A. Wilm, D. Dineen, et al. 2011. ���Fast, Scalable Generation of High���Quality Protein Multiple Sequence Alignments Using Clustal Omega.��� Molecular Systems Biology 7: 539.
  86. Spieck, E., M. Spohn, K. Wendt, et al. 2020. ���Extremophilic Nitrite���Oxidizing Chloroflexi From Yellowstone Hot Springs.��� ISME Journal 14: 364���379.
  87. Tassoulas, L. J., A. Robinson, B. Martinez���Vaz, K. G. Aukema, and L. P. Wackett. 2021. ���Filling in the Gaps in Metformin Biodegradation: a New Enzyme and a Metabolic Pathway for Guanylurea.��� Applied and Environmental Microbiology 87: e03003���20.
  88. Tassoulas, L. J., M. H. Elias, and L. P. Wackett. 2021. ���Discovery of an Ultraspecific Triuret Hydrolase (TrtA) Establishes the Triuret Biodegradation Pathway.��� Journal of Biological Chemistry 296: 100055.
  89. Tian, R., D. Ning, Z. He, et al. 2020. ���Small and Mighty: Adaptation of Superphylum Patescibacteria to Groundwater Environment Drives Their Genome Simplicity.��� Microbiome 8: 51.
  90. Uritskiy, G. V., J. DiRuggiero, and J. Taylor. 2018. ���MetaWRAP���A Flexible Pipeline for Genome���Resolved Metagenomic Data Analysis.��� Microbiome 6: 158.
  91. Van der Wielen, P. W. J. J., S. Voost, and D. Van der Kooij. 2009. ���Ammonia���Oxidizing Bacteria and Archaea in Groundwater Treatment and Drinking Water Distribution Systems.��� Applied and Environmental Microbiology 75: 4687���4695.
  92. Venable, C. S. 1918. ���The Action of Hydrogen Peroxide Upon Uric Acid. Second Paper on Hydrogen Peroxide as A Reagent in the PURIN Group.��� Journal of the American Chemical Society 40: 1099���1120.
  93. Verhamme, D. T., J. I. Prosser, and G. W. Nicol. 2011. ���Ammonia Concentration Determines Differential Growth of Ammonia���Oxidising Archaea and Bacteria in Soil Microcosms.��� ISME Journal 5: 1067���1071.
  94. Vijayan, A., R. K. Vattiringal Jayadradhan, D. Pillai, P. Prasannan Geetha, V. Joseph, and B. S. Isaac Sarojini. 2021. ���Nitrospira as Versatile Nitrifiers: Taxonomy, Ecophysiology, Genome Characteristics, Growth, and Metabolic Diversity.��� Journal of Basic Microbiology 61: 88���109.
  95. Vilardi, K. J., J. Johnston, Z. Dai, et al. 2024. ���Nitrogen Source Influences the Interactions of Comammox Bacteria With Aerobic Nitrifiers.��� Microbiology Spectrum 12: e03181���23.
  96. Vuong, P., B. Moreira���Grez, M. J. Wise, A. S. Whiteley, D. Kumaresan, and P. Kaur. 2022. ���From Rags to Enriched: Metagenomic Insights Into Ammonia���Oxidizing Archaea Following Ammonia Enrichment of a Denuded Oligotrophic Soil Ecosystem.��� Environmental Microbiology 24: 3097���3110.
  97. Wu, Y.���W., B. A. Simmons, and S. W. Singer. 2016. ���MaxBin 2.0: An Automated Binning Algorithm to Recover Genomes From Multiple Metagenomic Datasets.��� Bioinformatics 32: 605���607.
  98. Xue, J., P. W. Clinton, R. Sands, and T. W. Payn. 2022. ���Mineralisation and Nitrification of Biuret and Urea Nitrogen in Two New Zealand Forest Soils.��� Soil Research 61: 37���46.
  99. Yamamoto, M., H. Arai, M. Ishii, and Y. Igarashi. 2006. ���Role of Two 2���Oxoglutarate:Ferredoxin Oxidoreductases in Hydrogenobacter Thermophilus Under Aerobic and Anaerobic Conditions.��� FEMS Microbiology Letters 263: 189���193.
  100. Zhao, Y., J. Hu, W. Yang, et al. 2021. ���The Long���Term Effects of Using Nitrite and Urea on the Enrichment of Comammox Bacteria.��� Science of the Total Environment 755: 142580.
  101. Zou, D., R. Wan, L. Han, et al. 2020. ���Genomic Characteristics of a Novel Species of Ammonia���Oxidizing Archaea From the Jiulong River Estuary.��� Applied and Environmental Microbiology 86, no. 18: e00736���20. https://doi.org/10.1128/AEM.00736���20.

Grants

  1. DE- AC02-76SF00515/SLAC Accelerator Laboratory, U.S. Department of Energy, Biological and Environmental Research
  2. /Watershed Function Science Focus Area

MeSH Term

Archaea
Bacteria
Geologic Sediments
Nitrification
Metagenome
Ammonia
Phylogeny
Rivers
Oxidation-Reduction
Nitrites
Genome, Bacterial

Chemicals

Ammonia
Nitrites

Word Cloud

Created with Highcharts 10.0.0floodplainMAGsSRsedimentsNOBAOAcomammoxbacteriaNitrospiraleslineagesrecoveredincludingammonia-oxidisingarchaeaUSgenusunculturedammoniaRiparianfloodplainsimportantregionsbiogeochemicalcyclingnitrogenpresentnitrifyingmicroorganismsSlateRiverCrestedButteCOAdditionallyexplorepotentialnitrite-oxidisingdiversitylowerobservedwesternNitrosotalea-likeTA-20dominantAOBMicroorganismsPalsa-1315cladeBabundantammonia-oxidizersEstablishedconspicuouslyabsenthoweverNS-4familyNitrospiraceaeproposeputativeNitriteoxidationmaycarriedorganismssisterestablishedNitrospirabasedgenomiccontentcladesNitrifierharbourgenesusingalternativesourcesureacyanatebiurettriuretnitrilesthereforeappearslowfluxenvironmentselectsoligotrophicnitrifiersMetagenome-AssembledGenomesOligotrophicNitrifiersMountainousGravelbedFloodplainammonia���oxidisingmetagenome���assembledgenomeMAGnitrificationriversediment

Similar Articles

Cited By

No available data.