The influence of sleep disruption on learning and memory in fish.

Will Sowersby, Taiga Kobayashi, Satoshi Awata, Shumpei Sogawa, Masanori Kohda
Author Information
  1. Will Sowersby: Laboratory of Animal Sociology, Department of Biology, Osaka Metropolitan University, Osaka, Japan. ORCID
  2. Taiga Kobayashi: Laboratory of Animal Sociology, Department of Biology, Osaka Metropolitan University, Osaka, Japan. ORCID
  3. Satoshi Awata: Laboratory of Animal Sociology, Department of Biology, Osaka Metropolitan University, Osaka, Japan. ORCID
  4. Shumpei Sogawa: Laboratory of Animal Sociology, Department of Biology, Osaka Metropolitan University, Osaka, Japan. ORCID
  5. Masanori Kohda: Laboratory of Animal Sociology, Department of Biology, Osaka Metropolitan University, Osaka, Japan. ORCID

Abstract

Sleep is a ubiquitous process that has been conserved in animals. Yet, our understanding of the functions of sleep largely derives from a few species. Sleep is considered to play an important role in mental processes, including learning and memory consolidation, but how widespread this relationship is across taxa remains unclear. Here, we test the impact of sleep disruption on the ability of the cleaner fish (Labroides dimidiatus) to both learn and remember a novel cognitive task. Sleep was disrupted by exposing a subset of fish to light at set intervals during the night. We found a significant negative relationship between sleep disruption and the ability to learn a novel task. Specifically, we found that fish in the light-disturbed sleep treatment took significantly longer and made more incorrect decisions to find a food reward, compared with the undisturbed sleep treatment. All fish were then allowed a normal sleep schedule and retested several days later to assess their ability to remember the task. In contrast to the learning phase, we observed no significant differences between the two treatment groups in remembering the food reward several days later. Our results demonstrate a negative impact of sleep disruption on performance in a cognitive challenging task that appeared to have the strongest effect when fish were first exposed to the challenge. Importantly, we show that the association between sleep and mental processes, such as learning, may be widespread across vertebrate taxa and potentially have an early origin in the evolutionary history of vertebrate animals.

Keywords

References

  1. Alhola, P., & Polo‐Kantola, P. (2007). Sleep Deprivation: Impact on Cognitive Performance. Neuropsychiatric disease and treatment, 3(5), 553–567.
  2. Anafi, R. C., Kayser, M. S., & Raizen, D. M. (2019). Exploring phylogeny to find the function of sleep. Nature Reviews Neuroscience, 20(2), 109–116. https://doi.org/10.1038/s41583-018-0098-9
  3. Beyaert, L., Greggers, U., & Menzel, R. (2012). Honeybees consolidate navigation memory during sleep. Journal of Experimental Biology, 215(22), 3981–3988. https://doi.org/10.1242/jeb.075499
  4. Bierbach, D., Gómez‐Nava, L., Francisco, F. A., Lukas, J., Musiolek, L., Hafner, V. V., Landgraf, T., Romanczuk, P., & Krause, J. (2022). Live fish learn to anticipate the movement of a fish‐like robot. Bioinspiration & Biomimetics, 17(6), 65007. https://doi.org/10.1088/1748-3190/ac8e3e
  5. Blumberg, M. S., Lesku, J. A., Libourel, P. A., Schmidt, M. H., & Rattenborg, N. C. (2020). What Is REM Sleep? Current biology, 30(1), R38–R49. https://doi.org/10.1016/j.cub.2019.11.045
  6. Born, J., Rasch, B., & Gais, S. (2006). Sleep to remember. The Neuroscientist, 12(5), 410–424. https://doi.org/10.1177/1073858406292647
  7. Bshary, R., & Brown, C. (2014). Fish Cognition. Current Biolog, 24(19), R947–R950. https://doi.org/10.1016/j.cub.2014.08.043
  8. Buechel, S. D., Boussard, A., Kotrschal, A., van der Bijl, W., & Kolm, N. (2018). Brain size affects performance in a reversal‐learning test. Proceedings of the Royal Society B, 285, 20172031. https://doi.org/10.1098/rspb.2017.2031
  9. Burns, A. C., Windred, D. P., Rutter, M. K., Olivier, P., Vetter, C., Saxena, R., Lane, J. M., Phillips, A. J. K., & Cain, S. W. (2023). Day and night light exposure are associated with psychiatric disorders: An objective light study in >85,000 people. Nature Mental Health, 1, 853–862. https://doi.org/10.1038/s44220-023-00135-8
  10. Campbell, S. S., & Tobler, I. (1984). Animal sleep: A review of sleep duration across phylogeny. Neuroscience & Biobehavioral Reviews, 8(3), 269–300. https://doi.org/10.1016/0149-7634(84)90054-X
  11. Capellini, I., McNamara, P., Preston, B. T., Nunn, C. L., & Barton, R. A. (2009). Does sleep play a role in memory consolidation? A comparative test. PLoS One, 4(2), e4609. https://doi.org/10.1371/journal.pone.0004609
  12. Cirelli, C., & Tononi, G. (2008). Is sleep essential? PLoS Biology, 6(8), e216. https://doi.org/10.1371/journal.pbio.0060216
  13. Derégnaucourt, S., Mitra, P. P., Fehér, O., Pytte, C., & Tchernichovski, O. (2005). How sleep affects the developmental learning of bird song. Nature, 433(7027), 710–716. https://doi.org/10.1038/nature03275
  14. Diekelmann, S., & Born, J. (2010). The memory function of sleep. Nature Reviews Neuroscience, 11(2), 114–126. https://doi.org/10.1038/nrn2762
  15. Elvsåshagen, T., Norbom, L. B., Pedersen, P. Ø., Quraishi, S. H., Bjørnerud, A., Malt, U. F., Groote, I. R., & Westlye, L. T. (2015). Widespread changes in white matter microstructure after a day of waking and sleep deprivation. PLoS One, 10(5), e0127351. https://doi.org/10.1371/journal.pone.0127351
  16. Gerhardsson, A., Porada, D. K., Lundström, J. N., Axelsson, J., & Schwarz, J. (2020). Does insufficient sleep affect how you learn from reward or punishment? Reinforcement learning after 2 nights of sleep restriction. Journal of Sleep Research, 30(4), e13236. https://doi.org/10.1111/jsr.13236
  17. Grutter, A. S. (1995). Relationship Between Cleaning Rates and Ectoparasite Loads in Coral‐Reef Fishes. Marine Ecology Progress Series, 118(1‐3), 51–58. https://doi.org/10.3354/meps118051
  18. Grutter, A. (1999). Cleaner fish really do clean. Nature, 398, 672–673. https://doi.org/10.1038/19443
  19. Huber, R., Felice Ghilardi, M., Massimini, M., & Tononi, G. (2004). Local sleep and learning. Nature, 430, 78–81. https://doi.org/10.1038/nature02663
  20. Jackson, C., McCabe, B. J., Nicol, A. U., Grout, A. S., Brown, M. W., & Horn, G. (2008). Dynamics of a memory trace: Effects of sleep on consolidation. Current Biology, 18(6), 393–400. https://doi.org/10.1016/j.cub.2008.01.062
  21. Jenkins, J., & Dallenbach, K. (1924). Obliviscence during sleep and waking. The American Journal of Psychology, 35(4), 605–612. https://doi.org/10.2307/1414040
  22. Johnsson, R. D., Connelly, F., Gaviraghi Mussoi, J., Vyssotski, A. L., Cain, K. E., Roth, T. C., 2nd, & Lesku, J. A. (2022). Sleep loss impairs cognitive performance and alters song output in Australian magpies. Scientific Reports, 12(1), 6645. https://doi.org/10.1038/s41598-022-10162-7
  23. Joiner, W. J. (2016). Unraveling the evolutionary determinants of sleep. Current Biology, 26(20), 1073–1087. https://doi.org/10.1016/j.cub.2016.08.068
  24. Kavanau, J. L. (1996). Memory, sleep, and dynamic stabilization of neural circuitry: Evolutionary perspectives. Neuroscience & Biobehavioral Reviews, 20(2), 289–311. https://doi.org/10.1016/0149-7634(95)00019-4
  25. Keene, A. C., & Duboue, E. R. (2018). The origins and evolution of sleep. Journal of Experimental Biology, 221(11), jeb159533. https://doi.org/10.1242/jeb.159533
  26. Kelly, M. L., Collin, S. P., Hemmi, J. M., & Lesku, J. A. (2019). Evidence for sleep in sharks and rays: Behavioural, physiological, and evolutionary considerations. Brain, Behavior and Evolution, 94, 37–50. https://doi.org/10.1159/000504123
  27. Kelly, M. L., Collins, S. P., Lesku, J. A., Hemmi, J. M., Collin, S. P., & Radford, C. A. (2022). Energy conservation characterizes sleep in sharks. Biology Letters, 18, 20210259.
  28. Kohda, M., Bshary, R., Kubo, N., Awata, S., Sowersby, W., Kawasaka, K., Kobayashi, T., & Sogawa, S. (2023). Cleaner Fish Recognize Self in a Mirror Via Self‐Face Recognition Like Humans. Proceedings of the National Academy of Sciences, 120(7), e2208420120. https://doi.org/10.1073/pnas.2208420120
  29. Kohda, M., Hotta, T., Takeyama, T., Awata, S., Tanaka, H., Asai, J. Y., & Jordan, A. L. (2019). If a Fish Can Pass the Mark Test, What are the Implications for Consciousness and Self‐Awareness Testing in Animals? PLoS Biology, 17(2), e3000021. https://doi.org/10.1371/journal.pbio.3000021
  30. Krishnan, H. C., Noakes, E. J., & Lyons, L. C. (2016). Chronic sleep deprivation differentially affects short and long‐term operant memory in Aplysia. Neurobiology of Learning and Memory, 134, 349–359. https://doi.org/10.1016/j.nlm.2016.08.013
  31. Lee, D. A., Oikonomou, G., & Prober, D. A. (2022). Large‐scale analysis of sleep in zebrafish. Bio‐Protocol, 12(3), e4313. https://doi.org/10.21769/BioProtoc.4313
  32. Lenke, R. (1988). Hormonal control of sleep‐appetitive behaviour and diurnal activity rhythms in the cleaner wrasse Labroides dimidiatus (Labridae, Teleostei). Behavior Brain Research, 27, 73–85. https://doi.org/10.1016/0166-4328(88)90110-6
  33. Leung, L. C., Wang, G. X., Madelaine, R., Skariah, G., Kawakami, K., Deisseroth, K., Urban, A. E., & Mourrain, P. (2019). Neural signatures of sleep in zebrafish. Nature, 571, 198–204. https://doi.org/10.1038/s41586-019-1336-7
  34. Lima, S. L. (1998). Stress and decision making under the risk of predation: Recent developments from behavioral, reproductive, and ecological perspectives, Stress and behavior. In A. P. Møller, M. Milinski, & P. J. B. Slater (Eds.), Advances in the Study of Behavior (Vol. 27, pp. 215–290). Academic Press. https://doi.org/10.1016/S0065-3454(08)60366-6
  35. Lima, S. L., Rattenborg, N. C., Lesku, J. A., & Amlaner, C. J. (2005). Sleeping under the risk of predation. Animal Behaviour, 70(4), 723–736. https://doi.org/10.1016/j.anbehav.2005.01.008
  36. Mateo, J. M., & Johnston, R. E. (2000). Retention of social recognition after hibernation in Belding's ground squirrels. Animal Behaviour, 59(3), 491–499. https://doi.org/10.1006/anbe.1999.1363
  37. Mignot, E. (2008). Why we sleep: The temporal organization of recovery. PLoS Biology, 6(4), e106. https://doi.org/10.1371/journal.pbio.0060106
  38. Moorman, S., Gobes, S. M., van de Kamp, F. C., Zandbergen, M. A., & Bolhuis, J. J. (2015). Learning‐related brain hemispheric dominance in sleeping songbirds. Scientific Reports, 5, 9041. https://doi.org/10.1038/srep09041
  39. Nath, R. D., Bedbrook, C. N., Abrams, M. J., Basinger, T., Bois, J. S., Prober, D. A., Sternberg, P. W., Gradinaru, V., & Goentoro, L. (2017). The jellyfish Cassiopea exhibits a sleep‐like state. Current Biology, 27(19), 2984–2990. https://doi.org/10.1016/j.cub.2017.08.014
  40. Norman, H., Munson, A., Cortese, D., Koeck, B., & Killen, S. S. (2024). The interplay between sleep and ecophysiology, behaviour and responses to environmental change in fish. Journal of Experimental Biology, 227(11), jeb247138. https://doi.org/10.1242/jeb.247138
  41. Peigneux, P., Laureys, S., Delbeuck, X., & Maquet, P. (2001). Sleeping brain, learning brain. The role of sleep for memory systems. Neuroreport, 12(18), A111–A124. https://doi.org/10.1097/00001756-200112210-00001
  42. Pinheiro‐da‐Silva, J., Tran, S., & Luchiari, A. C. (2018). Sleep deprivation impairs cognitive performance in zebrafish: A matter of fact? Behavoural Processes, 157, 656–663. https://doi.org/10.1016/j.beproc.2018.04.004
  43. Pinheiro‐da‐Silva, J., Tran, S., Silva, P. F., & Luchiari, A. C. (2017). Good night, sleep tight: The effects of sleep deprivation on spatial associative learning in zebrafish. Pharmacology Biochemistry and Behavior, 159, 36–47. https://doi.org/10.1016/j.pbb.2017.06.011
  44. Portavella, M., Vargas, J. P., Torres, B., & Salas, C. (2002). The effects of telencephalic pallial lesions on spatial, temporal, and emotional learning in goldfish. Brain Research Bulletin, 57(3), 397–399. https://doi.org/10.1016/S0361-9230(01)00699-2
  45. Pulgar, J., Zeballos, D., Vargas, J., Aldana, M., Manriquez, P. H., Manriquez, K., Quijón, P. A., Widdicombe, S., Anguita, C., Quintanilla, D., & Duarte, C. (2019). Endogenous cycles, activity patterns and energy expenditure of an intertidal fish is modified by artificial light pollution at night (ALAN). Environmental Pollution, 244, 361–366. https://doi.org/10.1016/j.envpol.2018.10.063
  46. R Core Team. (2022). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org
  47. Rasch, B., & Born, J. (2013). About sleep's role in memory. Physiological Reviews, 93(2), 681–766. https://doi.org/10.1152/physrev.00032.2012
  48. Rattenborg, N. C., de la Iglesia, H. O., Kempenaers, B., Lesku, J. A., Meerlo, P., & Scriba, M. F. (2017). Sleep research goes wild: New methods and approaches to investigate the ecology, evolution and functions of sleep. Philosophical Transactions of the Royal Society, B: Biological Sciences, 372(1734), 20160251. https://doi.org/10.1098/rstb.2016.0251
  49. Rawashdeh, O., de Borsetti, N. H., Roman, G., & Cahill, G. M. (2007). Melatonin suppresses nighttime memory formation in zebrafish. Science, 318(5853), 1144–1146. https://doi.org/10.1126/science.1148564
  50. Ribeiro, S., Gervasoni, D., Soares, E. S., Zhou, Y., Lin, S. C., Pantoja, J., Lavine, M., & Nicolelis, M. A. (2004). Long‐lasting novelty‐induced neuronal reverberation during slow‐wave sleep in multiple forebrain areas. PLoS Biology, 2(1), E24. https://doi.org/10.1371/journal.pbio.0020024
  51. Rodríguez, F., López, J. C., Vargas, J. P., Broglio, C., Gómez, Y., & Salas, C. (2002). Spatial Memory and Hippocampal Pallium Through Vertebrate Evolution: Insights from Reptiles and Teleost Fish. Brain research bulletin, 57(3‐4), 499–503. https://doi.org/10.1016/s0361-9230(01)00682-7
  52. Roth, T. C., Rattenborg, N. C., & Pravosudov, V. V. (2010). The ecological relevance of sleep: The trade‐off between sleep, memory and energy conservation. Philosophical Transactions of the Royal Society, B: Biological Sciences, 365(1542), 945–959. https://doi.org/10.1098/rstb.2009.0209
  53. Schuster, S., Wöhl, S., Griebsch, M., & Klostermeier, I. (2006). Animal cognition: How archer fish learn to down rapidly moving targets. Current Biology, 16(4), 378–383. https://doi.org/10.1016/j.cub.2005.12.037
  54. Scullin, M. K., & Bliwise, D. L. (2015). Is cognitive aging associated with levels of REM sleep or slow wave sleep? Sleep, 38(3), 335–336. https://doi.org/10.5665/sleep.4482
  55. Sherry, D. F., & Hoshooley, J. S. (2010). Seasonal hippocampal plasticity in food‐storing birds. Philosophical Transactions of the Royal Society, B: Biological Sciences, 365(1542), 933–943. https://doi.org/10.1098/rstb.2009.0220
  56. Shettleworth, S. J. (1995). Comparative studies of memory in food storing birds: From the field to the skinner box. In E. Alleva, A. Fasolo, H.‐P. Lipp, L. Nadel, & L. Ricceri (Eds.), Behavioural brain research in naturalistic and semi‐naturalistic settings (pp. 159–192). Kluwer Academic.
  57. Shettleworth, S. J. (1998). Cognition, evolution, and behavior (2nd ed.). Oxford University Press.
  58. Siegel, J. M. (2001). The REM sleep‐memory consolidation hypothesis. Science, 294(5544), 1058–1063. https://doi.org/10.1126/science.1063049
  59. Smith, C. (2001). Sleep states and memory processes in humans: Procedural versus declarative memory systems. Sleep Medicine Reviews, 5(6), 491–506. https://doi.org/10.1053/smrv.2001.0164
  60. Smith, C., & Kelly, G. (1988). Paradoxical sleep deprivation applied two days after end of training retards learning. Physiology & Behavior, 43(2), 213–216. https://doi.org/10.1016/0031-9384(88)90240-5
  61. Stickgold, R. (2006). A memory boost while you sleep. Nature, 444(7119), 559–560. https://doi.org/10.1038/nature05309
  62. Straube, B. (2012). An overview of the neuro‐cognitive processes involved in the encoding, consolidation, and retrieval of true and false memories. Behavioral and Brain Functions, 8(1), 35. https://doi.org/10.1186/1744-9081-8-35
  63. Toates, F. (2012). Operant behavior. In N. M. Seel (Ed.), Encyclopedia of the sciences of learning. Springer. https://doi.org/10.1007/978-1-4419-1428-6_992
  64. Tobler, I. (2011). Phylogeny of sleep regulation. In M. H. Kryger, T. Roth, & W. C. Dement (Eds.), Principles and practice of sleep medicine (5th ed., pp. 112–125). Elsevier Saunders.
  65. Tobler, I., & Borbély, A. A. (1985). Effect of rest deprivation on motor activity of fish. Journal of Comparative Physiology A, 157(6), 817–822. https://doi.org/10.1007/BF01350078
  66. Tononi, G., & Cirelli, C. (2006). Sleep function and synaptic homeostasis. Sleep Medicine Reviews, 10(1), 49–62. https://doi.org/10.1016/j.smrv.2005.05.002
  67. Toth, L. A., & Bhargava, P. (2013). Animal Models of Sleep Disorders. Comparative medicine, 63(2), 91–104.
  68. Truskanov, N., Emery, Y., & Bshary, R. (2020). Juvenile Cleaner Fish can Socially Learn the Consequences of Cheating. Nature communications, 11, 1159. https://doi.org/10.1038/s41467-020-14712-3
  69. Tworkowski, L., & Lesku, J. A. (2019). Behavioural Ecology: Sleeping Safely Carries Energetic Costs. Current Biology, 29(16), R801–R803. https://doi.org/10.1016/j.cub.2019.07.024
  70. Van Dongen, H. P., Maislin, G., Mullington, J. M., & Dinges, D. F. (2003). The Cumulative Cost of Additional Wakefulness: Dose‐Response Effects on Neurobehavioral Functions and Sleep Physiology from Chronic Sleep Restriction and Total Sleep Deprivation. Sleep, 26(2), 117–126. https://doi.org/10.1093/sleep/26.2.117
  71. Vargas, J. P., Bingman, V. P., Portavella, M., & López, J. C. (2006). Telencephalon and geometric space in goldfish. European Journal of Neuroscience, 24(10), 2870–2878. https://doi.org/10.1111/j.1460-9568.2006.05174.x
  72. Vertes, R. P. (2004). Memory consolidation in sleep: Dream or reality. Neuron, 44(1), 135–148. https://doi.org/10.1016/j.neuron.2004.08.034
  73. Vorster, A. P., & Born, J. (2015). Sleep and memory in mammals, birds and invertebrates. Neuroscience and Biobehavioral Reviews, 50, 103–119. https://doi.org/10.1016/j.neubiorev.2014.09.020
  74. Wagner, U., Gais, S., Haider, H., Verleger, R., & Born, J. (2004). Sleep inspires insight. Nature, 427(6972), 352–355. https://doi.org/10.1038/nature02223
  75. Walker, M. P., & Stickgold, R. (2004). Sleep‐dependent learning and memory consolidation. Neuron, 44(1), 121–133. https://doi.org/10.1016/j.neuron.2004.08.031
  76. Walker, M. P., & Stickgold, R. (2006). Sleep, memory, and plasticity. Annual Review of Psychology, 57, 139–166. https://doi.org/10.1146/annurev.psych.56.091103.070307
  77. Whitney, P., Hinson, J. M., Jackson, M. L., & Van Dongen, H. P. A. (2015). Feedback blunting: Total sleep deprivation impairs decision making that requires updating based on feedback. Sleep, 38, 745–754.
  78. Wismer, S., Pinto, A. I., Triki, Z., Grutter, A. S., Roche, D. G., & Bshary, R. (2019). Cue‐based decision rules of cleaner fish in a biological market task. Animal Behaviour, 158, 249–260. https://doi.org/10.1016/j.anbehav.2019.09.013
  79. Xie, Y., & Dorsky, R. I. (2017). Development of the hypothalamus: Conservation, modification and innovation. Development, 144(9), 1588–1599. https://doi.org/10.1242/dev.139055
  80. Yokogawa, T., Marin, W., Faraco, J., Pézeron, G., Appelbaum, L., Zhang, J., Rosa, F., Mourrain, P., & Mignot, E. (2007). Characterization of sleep in zebrafish and insomnia in hypocretin receptor mutants. PLoS Biology, 5(10), e277. https://doi.org/10.1371/journal.pbio.0050277
  81. Zhdanova, I. V., Wang, S. Y., Leclair, O. U., & Danilova, N. P. (2001). Melatonin promotes sleep‐like state in zebrafish. Brain Research, 903(1–2), 263–268. https://doi.org/10.1016/s0006-8993(01)02444-1

Grants

  1. /Grants-in-Aid for Scientific Research (KAKENHI), Japanese Society for the Promotion of Science

Word Cloud

Created with Highcharts 10.0.0sleepfishlearningdisruptiontaskSleepmemoryabilitytreatmentanimalsmentalprocesseswidespreadrelationshipacrosstaxaimpactlearnremembernovelcognitivefoundsignificantnegativefoodrewardseveraldayslatervertebrateubiquitousprocessconservedYetunderstandingfunctionslargelyderivesspeciesconsideredplayimportantroleincludingconsolidationremainsuncleartestcleanerLabroidesdimidiatusdisruptedexposingsubsetlightsetintervalsnightSpecificallylight-disturbedtooksignificantlylongermadeincorrectdecisionsfindcomparedundisturbedallowednormalscheduleretestedassesscontrastphaseobserveddifferencestwogroupsrememberingresultsdemonstrateperformancechallengingappearedstrongesteffectfirstexposedchallengeImportantlyshowassociationmaypotentiallyearlyoriginevolutionaryhistoryinfluencecognitionevolution

Similar Articles

Cited By