Neuropeptide receptor distributions in male and female vary between female-dominant and egalitarian species.

Allie E Schrock, Mia R Grossman, Nicholas M Grebe, Annika Sharma, Sara M Freeman, Michelle C Palumbo, Karen L Bales, Heather B Patisaul, Christine M Drea
Author Information
  1. Allie E Schrock: Department of Evolutionary Anthropology, Duke University, Durham, NC, USA. ORCID
  2. Mia R Grossman: Department of Psychology & Neuroscience, Duke University, Durham, NC, USA. ORCID
  3. Nicholas M Grebe: Department of Evolutionary Anthropology, Duke University, Durham, NC, USA. ORCID
  4. Annika Sharma: Department of Evolutionary Anthropology, Duke University, Durham, NC, USA.
  5. Sara M Freeman: Department of Psychology, University of California Davis, Davis, CA, USA. ORCID
  6. Michelle C Palumbo: Department of Psychology, University of California Davis, Davis, CA, USA.
  7. Karen L Bales: Department of Psychology, University of California Davis, Davis, CA, USA. ORCID
  8. Heather B Patisaul: Biological Sciences Department, NC State University, Raleigh, NC, USA.
  9. Christine M Drea: Department of Evolutionary Anthropology, Duke University, Durham, NC, USA. ORCID

Abstract

Aggression and its neurochemical modulators are typically studied in males, leaving the mechanisms of female competitive Aggression or dominance largely unexplored. To better understand how competitive Aggression is regulated in the primate brain, we used receptor autoradiography to compare the neural distributions of oxytocin and vasopressin receptors in male and female members of female-dominant versus egalitarian/codominant species within the genus, wherein dominance structure is a reliable proxy of Aggression in both sexes. We found that oxytocin receptor binding in the central amygdala (CeA) was predicted by dominance structure, with the members of three codominant species showing more oxytocin receptor binding in this region than their peers in four female-dominant species. Thus, both sexes in female-dominant show a pattern consistent with the regulation of Aggression in male rodents. We suggest that derived pacifism in stems from selective suppression of ancestral female Aggression over evolutionary time via a mechanism of increased oxytocin receptor binding in the CeA, rather than from augmented male Aggression. This interpretation implies fitness costs to female Aggression and/or benefits to its inhibition. These data establish as a robust model for examining neural correlates of male and female competitive Aggression, potentially providing novel insights into female dominance.

Keywords

References

  1. Psychoneuroendocrinology. 2023 Apr;150:106044 [PMID: 36753883]
  2. Curr Biol. 2019 Jun 17;29(12):1938-1953.e6 [PMID: 31178317]
  3. Neuroreport. 2000 Jan 17;11(1):43-8 [PMID: 10683827]
  4. Front Neurosci. 2022 May 18;16:906617 [PMID: 35663559]
  5. Nat Commun. 2021 Dec 17;12(1):7332 [PMID: 34921140]
  6. Sci Rep. 2021 Feb 12;11(1):3746 [PMID: 33580133]
  7. Nat Neurosci. 2020 Nov;23(11):1317-1328 [PMID: 33046890]
  8. Horm Behav. 2012 Mar;61(3):283-92 [PMID: 22079778]
  9. J Morphol. 2008 Apr;269(4):451-63 [PMID: 17972270]
  10. Neuropharmacology. 2015 Mar;90:74-81 [PMID: 25437825]
  11. R Soc Open Sci. 2017 Jan 18;4(1):161014 [PMID: 28280597]
  12. Folia Primatol (Basel). 1990;55(2):96-103 [PMID: 2227727]
  13. Horm Behav. 2003 Sep;44(3):161-70 [PMID: 14609538]
  14. Psychopharmacology (Berl). 1978 Apr 14;57(1):47-55 [PMID: 26933]
  15. Front Psychol. 2017 Sep 27;8:1613 [PMID: 29021768]
  16. Nat Neurosci. 1999 Nov;2(11):943-5 [PMID: 10526331]
  17. Acta Endocrinol (Copenh). 1988 Apr;117(4):525-30 [PMID: 3291527]
  18. Behav Biol. 1975 Sep;15(1):73-83 [PMID: 1237289]
  19. Prog Neurobiol. 2008 Jan;84(1):1-24 [PMID: 18053631]
  20. Neurosci Biobehav Rev. 1983 Fall;7(3):391-4 [PMID: 6199700]
  21. Sci Rep. 2015 May 07;5:9631 [PMID: 25950904]
  22. PLoS One. 2013 Dec 18;8(12):e82830 [PMID: 24367560]
  23. Neuropharmacology. 2019 Sep 15;156:107451 [PMID: 30502376]
  24. Biol Psychiatry. 2015 May 15;77(10):859-69 [PMID: 25433901]
  25. J Neuroendocrinol. 1999 Apr;11(4):291-7 [PMID: 10223283]
  26. Brain Res. 1992 Mar 6;574(1-2):9-20 [PMID: 1386276]
  27. Physiol Rev. 2001 Apr;81(2):629-83 [PMID: 11274341]
  28. Primates. 2002 Jul;43(3):191-9 [PMID: 12145400]
  29. Behav Brain Res. 2001 Nov 1;125(1-2):167-81 [PMID: 11682108]
  30. J Neurosci. 1994 Sep;14(9):5381-92 [PMID: 8083743]
  31. Neuroscience. 2014 Jul 25;273:12-23 [PMID: 24814726]
  32. Horm Behav. 2017 Jul;93:9-17 [PMID: 28359742]
  33. Horm Behav. 2024 Mar;159:105471 [PMID: 38128247]
  34. Nat Rev Neurosci. 2007 Jul;8(7):536-46 [PMID: 17585306]
  35. Horm Behav. 2022 Mar;139:105108 [PMID: 35033896]
  36. Behav Neurosci. 2015 Aug;129(4):389-98 [PMID: 26214213]
  37. Nat Neurosci. 2021 Apr;24(4):529-541 [PMID: 33589833]
  38. J Neuroendocrinol. 2019 Aug;31(8):e12760 [PMID: 31233647]
  39. Philos Trans R Soc Lond B Biol Sci. 1970 Aug 6;259(828):119-30 [PMID: 4399057]
  40. Curr Biol. 2007 Oct 23;17(20):R868-74 [PMID: 17956742]
  41. Horm Behav. 2007 Apr;51(4):555-67 [PMID: 17382329]
  42. Neurosci Lett. 2009 Sep 25;461(3):217-22 [PMID: 19539696]
  43. Methods Mol Biol. 2022;2384:105-125 [PMID: 34550571]
  44. Horm Behav. 2019 Sep;115:104554 [PMID: 31276664]
  45. Trends Endocrinol Metab. 2000 Dec;11(10):406-10 [PMID: 11091117]
  46. Brain Behav Evol. 2007;70(4):274-85 [PMID: 17914259]
  47. Pharmacol Biochem Behav. 2008 Nov;91(1):77-83 [PMID: 18640147]
  48. Genes Brain Behav. 2005 Jun;4(4):229-39 [PMID: 15924555]
  49. Endocrinology. 1959 Sep;65:369-82 [PMID: 14432658]
  50. Syst Biol. 2016 Sep;65(5):772-91 [PMID: 27113475]
  51. Philos Trans R Soc Lond B Biol Sci. 2013 Oct 28;368(1631):20130085 [PMID: 24167315]
  52. Front Endocrinol (Lausanne). 2022 Aug 10;13:957114 [PMID: 36034455]
  53. Horm Behav. 2011 Apr;59(4):417-27 [PMID: 20932838]
  54. PLoS One. 2008 Jul 16;3(7):e2678 [PMID: 18628830]
  55. BMC Evol Biol. 2013 Oct 26;13:233 [PMID: 24159931]
  56. J Comp Neurol. 2008 Apr 20;507(6):1847-59 [PMID: 18271022]
  57. Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):13233-13238 [PMID: 27807133]
  58. Front Neuroendocrinol. 2016 Jan;40:1-23 [PMID: 25951955]
  59. Brain Res. 1985 Jan 28;325(1-2):391-4 [PMID: 3978433]
  60. Brain Struct Funct. 2022 Jun;227(5):1907-1919 [PMID: 34482474]
  61. Philos Trans R Soc Lond B Biol Sci. 2012 Jul 5;367(1597):1909-22 [PMID: 22641829]
  62. Psychoneuroendocrinology. 2014 Jul;45:128-41 [PMID: 24845184]
  63. Neuron. 2015 Apr 22;86(2):541-54 [PMID: 25843406]

Grants

  1. /Duke Institute for Brain Sciences
  2. P51 OD011107/NIH HHS
  3. SBE-1808803/NSF Directorate for Social, Behavioral and Economic Sciences
  4. OD011107/NIH HHS
  5. SBE-2235348/NSF Directorate for Social, Behavioral, and Economic Sciences
  6. /Charles Lafitte Foundation
  7. /Duke Office of Undergraduate Research Support
  8. R21MH115680/NIMH NIH HHS
  9. R21 MH115680/NIMH NIH HHS

MeSH Term

Animals
Male
Female
Receptors, Oxytocin
Aggression
Receptors, Vasopressin
Social Dominance
Autoradiography
Amygdala
Receptors, Neuropeptide

Chemicals

Receptors, Oxytocin
Receptors, Vasopressin
Receptors, Neuropeptide

Word Cloud

Created with Highcharts 10.0.0aggressionfemaledominancereceptoroxytocinmalefemale-dominantspeciescompetitivebindingneuraldistributionsvasopressinmembersstructuresexesamygdalaCeAAggressionneurochemicalmodulatorstypicallystudiedmalesleavingmechanismslargelyunexploredbetterunderstandregulatedprimatebrainusedautoradiographycomparereceptorsversusegalitarian/codominantwithingenuswhereinreliableproxyfoundcentralpredictedthreecodominantshowingregionpeersfourThusshowpatternconsistentregulationrodentssuggestderivedpacifismstemsselectivesuppressionancestralevolutionarytimeviamechanismincreasedratheraugmentedinterpretationimpliesfitnesscostsand/orbenefitsinhibitiondataestablishrobustmodelexaminingcorrelatespotentiallyprovidingnovelinsightsNeuropeptidevaryegalitarianandrogen

Similar Articles

Cited By

No available data.