Heterozygous CELF4 variants in the N-term region crucial for the RNA-binding activity lead to neurodevelopmental disorder and obesity.

Ange-Line Bruel, Anneke T Vulto-vanSilfhout, Fr��d��ric Bilan, Gwena��l Le Guyader, Brigitte Gilbert-Dussardier, Xavier Le Guillou, Sophie Rondeau, Marl��ne Rio, Kristen N Lee, Adelyn Beil, Mohnish Suri, Fran��ois Guerin, Valentin Ruault, Alice Goldenberg, Fran��ois Lecoquierre, Nicole Bertsch, Rhonda Anderson, Xiao-Ru Yang, Micheil Inness, Emi Rikeros-Orozco, Maria Palomares-Bralo, Jennifer Cassady Hayek, Jennifer Cech, Ankita Jhuraney, Runjun D Kumar, Saadet Mercimek-Andrews, Anastasia Ambrose, Erin N Wakeling, Ingrid M Wentzensen, Erin Torti, Catherine Gooch, Laurence Faivre, Christophe Philippe, Yannis Duffourd, Antonio Vitobello, Christel Thauvin-Robinet
Author Information
  1. Ange-Line Bruel: INSERM UMR 1231, G��n��tique des Anomalies du D��veloppement, Universit�� de Bourgogne Franche-Comt��, Dijon, France. ange-line.bruel@u-bourgogne.fr. ORCID
  2. Anneke T Vulto-vanSilfhout: Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
  3. Fr��d��ric Bilan: Department of Genetics, CHU de Poitiers, Poitiers, France.
  4. Gwena��l Le Guyader: Department of Genetics, CHU de Poitiers, Poitiers, France. ORCID
  5. Brigitte Gilbert-Dussardier: Department of Genetics, CHU de Poitiers, Poitiers, France. ORCID
  6. Xavier Le Guillou: Department of Genetics, CHU de Poitiers, Poitiers, France. ORCID
  7. Sophie Rondeau: Department of Genetics, Necker Enfants Malades Hospital, Paris Descartes-Sorbonne Paris Cit�� University, Paris, France.
  8. Marl��ne Rio: Department of Genetics, Necker Enfants Malades Hospital, Paris Descartes-Sorbonne Paris Cit�� University, Paris, France. ORCID
  9. Kristen N Lee: Department of Pediatrics, Division of Pediatric Genetics, Metabolism and Genomic Medicine, University of Michigan, Ann Arbor, MI, USA. ORCID
  10. Adelyn Beil: Department of Pediatrics, Division of Pediatric Genetics, Metabolism and Genomic Medicine, University of Michigan, Ann Arbor, MI, USA.
  11. Mohnish Suri: Nottingham Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK.
  12. Fran��ois Guerin: Service de P��diatrie, CH de La Rochelle, La Rochelle, France.
  13. Valentin Ruault: Medical Genetics and Rare Diseases Department, Montpellier University Hospital, Montpellier, France.
  14. Alice Goldenberg: Department of Genetics and Reference Center for Developmental Disorders, Rouen Normandie University, Inserm U12045 and CHU Rouen, FHU-G4 G��nomique, Rouen, France.
  15. Fran��ois Lecoquierre: Department of Genetics and Reference Center for Developmental Disorders, Rouen Normandie University, Inserm U12045 and CHU Rouen, FHU-G4 G��nomique, Rouen, France. ORCID
  16. Nicole Bertsch: The Community Health Clinic Shipshewana, Shipshewana, IN, USA.
  17. Rhonda Anderson: The Community Health Clinic Shipshewana, Shipshewana, IN, USA.
  18. Xiao-Ru Yang: Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
  19. Micheil Inness: Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada.
  20. Emi Rikeros-Orozco: Instituto de Gen��tica M��dica y Molecular (INGEMM), Hospital Universitario La Paz, Madrid, Spain.
  21. Maria Palomares-Bralo: Instituto de Gen��tica M��dica y Molecular (INGEMM), Hospital Universitario La Paz, Madrid, Spain.
  22. Jennifer Cassady Hayek: Seattle Children's Hospital, Seattle, WA, USA. ORCID
  23. Jennifer Cech: Seattle Children's Hospital, Seattle, WA, USA.
  24. Ankita Jhuraney: University of Washington Medical Center, Seattle, WA, USA.
  25. Runjun D Kumar: University of Washington Medical Center, Seattle, WA, USA.
  26. Saadet Mercimek-Andrews: Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
  27. Anastasia Ambrose: Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
  28. Erin N Wakeling: GeneDx, Gaitherburg, MD, USA.
  29. Ingrid M Wentzensen: GeneDx, Gaitherburg, MD, USA.
  30. Erin Torti: GeneDx, Gaitherburg, MD, USA.
  31. Catherine Gooch: Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA.
  32. Laurence Faivre: INSERM UMR 1231, G��n��tique des Anomalies du D��veloppement, Universit�� de Bourgogne Franche-Comt��, Dijon, France. ORCID
  33. Christophe Philippe: INSERM UMR 1231, G��n��tique des Anomalies du D��veloppement, Universit�� de Bourgogne Franche-Comt��, Dijon, France. ORCID
  34. Yannis Duffourd: INSERM UMR 1231, G��n��tique des Anomalies du D��veloppement, Universit�� de Bourgogne Franche-Comt��, Dijon, France.
  35. Antonio Vitobello: INSERM UMR 1231, G��n��tique des Anomalies du D��veloppement, Universit�� de Bourgogne Franche-Comt��, Dijon, France. ORCID
  36. Christel Thauvin-Robinet: INSERM UMR 1231, G��n��tique des Anomalies du D��veloppement, Universit�� de Bourgogne Franche-Comt��, Dijon, France. ORCID

Abstract

RNA-binding proteins play a key role in post-transcriptional events, such as mRNA splicing, transport, stability, translation and decay. Dysregulation of RNA life can have dramatic consequences. CELF RNA-binding proteins appear to be essential during embryo development. In this study, we identified 15 patients with heterozygous missense or loss-of-function variants in the CELF4 gene by exome or genome sequencing. All variants affecting the N-terminus of the protein are essential and sufficient for the RNA-binding and splicing activity or RRM domains. Most patients presented with neurodevelopmental disorders including global developmental delay/intellectual disability (11/14), seizures (9/15) and overweight/obesity (10/14) that began in childhood. Clinical features are similar to the reported celf4-mouse mutant phenotype. This study highlights the essential role of CELF4 in development and its involvement as a novel etiology of neurodevelopmental disorders with obesity.

References

  1. Prashad S, Gopal PP. RNA-binding proteins in neurological development and disease. RNA Biol. 2021;18:972���87. [DOI: 10.1080/15476286.2020.1809186]
  2. Parra AS, Johnston CA. Emerging roles of RNA-binding proteins in neurodevelopment. J Dev Biol. 2022;10:23. [DOI: 10.3390/jdb10020023]
  3. Zhou H, Mangelsdorf M, Liu J, Zhu L, Wu JY. RNA-binding proteins in neurological diseases. Sci China Life Sci. 2014;57:432���44. [DOI: 10.1007/s11427-014-4647-9]
  4. Gebauer F, Schwarzl T, Valc��rcel J, Hentze MW. RNA-binding proteins in human genetic disease. Nat Rev Genet. 2021;22:185���98. [DOI: 10.1038/s41576-020-00302-y]
  5. Gerstberger S, Hafner M, Ascano M, Tuschl T. Evolutionary conservation and expression of human RNA-binding proteins and their role in human genetic disease. Adv Exp Med Biol. 2014;825:1���55. [DOI: 10.1007/978-1-4939-1221-6_1]
  6. Forman TE, Dennison BJC, Fantauzzo KA. The role of RNA-binding proteins in vertebrate neural crest and craniofacial development. J Dev Biol. 2021;9:34. [DOI: 10.3390/jdb9030034]
  7. Nussbacher JK, Tabet R, Yeo GW, Lagier-Tourenne C. Disruption of RNA metabolism in neurological diseases and emerging therapeutic interventions. Neuron. 2019;102:294���320. [DOI: 10.1016/j.neuron.2019.03.014]
  8. Wagnon JL, Briese M, Sun W, Mahaffey CL, Curk T, Rot G, et al. CELF4 regulates translation and local abundance of a vast set of mRNAs, including genes associated with regulation of synaptic function. PLoS Genet. 2012;8:e1003067. [DOI: 10.1371/journal.pgen.1003067]
  9. Brinegar AE, Cooper TA. Roles for RNA-binding proteins in development and disease. Brain Res. 2016;1647:1���8. [DOI: 10.1016/j.brainres.2016.02.050]
  10. Dasgupta T, Ladd AN. The importance of CELF control: molecular and biological roles of the CUG-BP, Elav-like family of RNA-binding proteins. Wiley Interdiscip Rev RNA. 2012;3:104���21. [DOI: 10.1002/wrna.107]
  11. Ladd AN, Charlet N, Cooper TA. The CELF family of RNA binding proteins is implicated in cell-specific and developmentally regulated alternative splicing. Mol Cell Biol. 2001;21:1285���96. [DOI: 10.1128/MCB.21.4.1285-1296.2001]
  12. Salamon I, Park Y, Mi��ki�� T, Kopi�� J, Matteson P, Page NF, et al. Celf4 controls mRNA translation underlying synaptic development in the prenatal mammalian neocortex. Nat Commun. 2023;14:6025. [DOI: 10.1038/s41467-023-41730-8]
  13. MacPherson MJ, Erickson SL, Kopp D, Wen P, Aghanoori MR, Kedia S, et al. Nucleocytoplasmic transport of the RNA-binding protein CELF2 regulates neural stem cell fates. Cell Rep. 2021;35:109226. [DOI: 10.1016/j.celrep.2021.109226]
  14. Itai T, Hamanaka K, Sasaki K, Wagner M, Kotzaeridou U, Br��sse I, et al. De novo variants in CELF2 that disrupt the nuclear localization signal cause developmental and epileptic encephalopathy. Hum Mutat. 2021;42:66���76. [DOI: 10.1002/humu.24130]
  15. Dougherty JD, Maloney SE, Wozniak DF, Rieger MA, Sonnenblick L, Coppola G, et al. The disruption of Celf6, a gene identified by translational profiling of serotonergic neurons, results in autism-related behaviors. J Neurosci J Soc Neurosci. 2013;33:2732���53. [DOI: 10.1523/JNEUROSCI.4762-12.2013]
  16. Wagnon JL, Mahaffey CL, Sun W, Yang Y, Chao HT, Frankel WN. Etiology of a genetically complex seizure disorder in Celf4 mutant mice. Genes Brain Behav. 2011;10:765���77. [DOI: 10.1111/j.1601-183X.2011.00717.x]
  17. Sun W, Wagnon JL, Mahaffey CL, Briese M, Ule J, Frankel WN. Aberrant sodium channel activity in the complex seizure disorder of Celf4 mutant mice. J Physiol. 2013;591:241���55. [DOI: 10.1113/jphysiol.2012.240168]
  18. Yang Y, Mahaffey CL, B��rub�� N, Maddatu TP, Cox GA, Frankel WN. Complex seizure disorder caused by Brunol4 deficiency in mice. PLoS Genet. 2007;3:e124. [DOI: 10.1371/journal.pgen.0030124]
  19. Shen Y, Zhang C, Xiao K, Liu D, Xie G. CELF4 regulates spine formation and depression-like behaviors of mice. Biochem Biophys Res Commun. 2022;605:39���44. [DOI: 10.1016/j.bbrc.2022.03.067]
  20. Peng S, Cai X, Chen J, Sun J, Lai B, Chang M, et al. The role of CELF family in neurodevelopment and neurodevelopmental disorders. Neurobiol Dis. 2024;197:106525. [DOI: 10.1016/j.nbd.2024.106525]
  21. Barone R, Fichera M, De Grandi M, Battaglia M, Lo Faro V, Mattina T, et al. Familial 18q12.2 deletion supports the role of RNA-binding protein CELF4 in autism spectrum disorders. Am J Med Genet A. 2017;173:1649���55. [DOI: 10.1002/ajmg.a.38205]
  22. Chen CP, Hsieh CH, Chern SR, Wu PS, Chen SW, Lai ST, et al. Prenatal diagnosis and molecular cytogenetic characterization of an interstitial deletion of 18q12.1-q12.3 encompassing DTNA, CELF4 and SETBP1. Taiwan J Obstet Gynecol. 2017;56:847���51. [DOI: 10.1016/j.tjog.2017.10.027]
  23. Chen CP, Huang MC, Chen YY, Chern SR, Wu PS, Chen YT, et al. Prenatal diagnosis of de novo interstitial deletions involving 5q23.1-q23.3 and 18q12.1-q12.3 by array CGH using uncultured amniocytes in a pregnancy with fetal interrupted aortic arch and atrial septal defect. Gene. 2013;531:496���501. [DOI: 10.1016/j.gene.2013.09.010]
  24. Halgren C, Bache I, Bak M, Myatt MW, Anderson CM, Br��ndum-Nielsen K, et al. Haploinsufficiency of CELF4 at 18q12.2 is associated with developmental and behavioral disorders, seizures, eye manifestations, and obesity. Eur J Hum Genet. 2012;20:1315���9. [DOI: 10.1038/ejhg.2012.92]
  25. Gilling M, Lauritsen MB, M��ller M, Henriksen KF, Vicente A, Oliveira G, et al. A 3.2 Mb deletion on 18q12 in a patient with childhood autism and high-grade myopia. Eur J Hum Genet. 2008;16:312���9. [DOI: 10.1038/sj.ejhg.5201985]

Grants

  1. Saadet Mercimek-Andrews/Physicians' Services Incorporated Foundation (PSI Foundation)
  2. Mercimek-Andrews Saadet/Physicians' Services Incorporated Foundation (PSI Foundation)
  3. Mercimek-Andrews Saadet/Physicians' Services Incorporated Foundation (PSI Foundation)

Word Cloud

Created with Highcharts 10.0.0RNA-bindingessentialvariantsCELF4neurodevelopmentalproteinsrolesplicingdevelopmentstudypatientsactivitydisordersobesityplaykeypost-transcriptionaleventsmRNAtransportstabilitytranslationdecayDysregulationRNAlifecandramaticconsequencesCELFappearembryoidentified15heterozygousmissenseloss-of-functiongeneexomegenomesequencingaffectingN-terminusproteinsufficientRRMdomainspresentedincludingglobaldevelopmentaldelay/intellectualdisability11/14seizures9/15overweight/obesity10/14beganchildhoodClinicalfeaturessimilarreportedcelf4-mousemutantphenotypehighlightsinvolvementnoveletiologyHeterozygousN-termregioncrucialleaddisorder

Similar Articles

Cited By

No available data.