A Conserved Somatic Sex Determination Cascade Instructs Trait-Specific Sexual Dimorphism in Horned Dung Beetles.

London C Mitchell, Armin P Moczek, Erica M Nadolski
Author Information
  1. London C Mitchell: Department of Biology, Indiana University, Bloomington, Indiana, USA.
  2. Armin P Moczek: Department of Biology, Indiana University, Bloomington, Indiana, USA. ORCID
  3. Erica M Nadolski: Department of Biology, Indiana University, Bloomington, Indiana, USA. ORCID

Abstract

Sex-specific trait expression represents a striking dimension of morphological variation within and across species. The mechanisms instructing sex-specific organ development have been well studied in a small number of insect model systems, suggesting striking conservation in some parts of the somatic sex determination pathway while hinting at possible evolutionary lability in others. However, further resolution of this phenomenon necessitates additional taxon sampling, particularly in groups in which sexual dimorphisms have undergone significant elaboration and diversification. Here, we functionally investigate the somatic sex determination pathway in the gazelle dung beetle Digitonthophagus gazella, an emerging model system in the study of the development and evolution of sexual dimorphisms. We find that RNA interference (RNAi) targeting transformer (tra) caused chromosomal females to develop morphological traits largely indistinguishable from those normally only observed in males, and that tra is sufficient to induce splicing of the normally male-specific isoform of doublesex in chromosomal females, while leaving males unaffected. Further, intersex was found to phenocopy previously described RNAi phenotypes of doublesex in female but not male beetles. These findings match predictions derived from models of the sex determination cascade as developed largely through studies in Drosophila melanogaster. In contrast, efforts to target transformer2 via RNAi resulted in high juvenile mortality but did not appear to affect doublesex splicing, whereas RNAi targeting Sex-lethal and two putative orthologs of hermaphrodite yielded no obvious phenotypic modifications in either males or females, raising the possibility that the function of a subset of sex determination genes may be derived in select Diptera and thus nonrepresentative of their roles in other holometabolous orders. Our results help illuminate how the differential evolutionary lability of the somatic sex determination pathway has contributed to the extraordinary morphological diversification of sex-specific trait expression found in nature.

Keywords

References

  1. Curr Opin Insect Sci. 2023 Dec;60:101114 [PMID: 37709168]
  2. Elife. 2019 Sep 03;8: [PMID: 31478483]
  3. Science. 2010 Apr 30;328(5978):620-3 [PMID: 20431014]
  4. EMBO Rep. 2013 Jun;14(6):561-7 [PMID: 23609854]
  5. Fly (Austin). 2010 Jan-Mar;4(1):60-70 [PMID: 20160499]
  6. Sex Dev. 2014;8(1-3):38-49 [PMID: 24401160]
  7. Trends Ecol Evol. 2006 Jun;21(6):296-302 [PMID: 16769428]
  8. Nat Commun. 2017 Feb 27;8:14593 [PMID: 28239147]
  9. Development. 2002 Oct;129(20):4661-75 [PMID: 12361959]
  10. Genetics. 2012 Nov;192(3):1015-26 [PMID: 22942126]
  11. Nat Ecol Evol. 2020 Jul;4(7):970-978 [PMID: 32424280]
  12. Int J Dev Biol. 2009;53(1):109-20 [PMID: 19123132]
  13. Nucleic Acids Res. 2023 Jan 6;51(D1):D445-D451 [PMID: 36350662]
  14. J Exp Zool B Mol Dev Evol. 2025 Jan;344(1):7-13 [PMID: 39188022]
  15. Proc Biol Sci. 2021 Jun 30;288(1953):20210241 [PMID: 34157867]
  16. Development. 1998 Apr;125(8):1487-94 [PMID: 9502729]
  17. Nature. 2014 May 29;509(7502):633-6 [PMID: 24828047]
  18. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  19. Genetics. 2007 Nov;177(3):1733-41 [PMID: 17947419]
  20. Genetics. 2024 May 7;227(1): [PMID: 38301657]
  21. Genetics. 2009 Jul;182(3):785-98 [PMID: 19433631]
  22. Methods Mol Biol. 2011;772:471-97 [PMID: 22065456]
  23. Cell. 1991 Apr 19;65(2):229-39 [PMID: 2015624]
  24. Curr Opin Genet Dev. 2010 Aug;20(4):376-83 [PMID: 20570131]
  25. Brief Funct Genomics. 2015 Nov;14(6):396-406 [PMID: 25797692]
  26. Genome. 2006 Mar;49(3):263-8 [PMID: 16604109]
  27. Evol Dev. 2005 May-Jun;7(3):175-85 [PMID: 15876190]
  28. Dev Genes Evol. 2005 Apr;215(4):165-76 [PMID: 15662529]
  29. Ecol Evol. 2016 Feb 12;6(6):1601-13 [PMID: 26904187]
  30. J Exp Biol. 2014 May 15;217(Pt 10):1653-5 [PMID: 24577442]
  31. BMC Genomics. 2016 Mar 22;17:250 [PMID: 27001106]
  32. Insect Biochem Mol Biol. 2013 Dec;43(12):1125-32 [PMID: 24056158]
  33. J Evol Biol. 2023 Nov;36(11):1641-1648 [PMID: 37885148]
  34. Nat Methods. 2012 Jun 28;9(7):676-82 [PMID: 22743772]
  35. PLoS Genet. 2011 Mar;7(3):e1001345 [PMID: 21455482]
  36. PLoS Genet. 2024 Mar 5;20(3):e1011165 [PMID: 38442113]
  37. Int J Dev Biol. 2008;52(7):837-56 [PMID: 18956315]
  38. BMC Evol Biol. 2010 May 13;10:140 [PMID: 20465812]
  39. PLoS Biol. 2009 Oct;7(10):e1000222 [PMID: 19841734]
  40. Sci Rep. 2012;2:948 [PMID: 23230513]
  41. Development. 1998 Jan;125(2):225-35 [PMID: 9486796]
  42. Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):8992-7 [PMID: 19451631]
  43. Dev Biol. 1992 Nov;154(1):101-17 [PMID: 1426619]
  44. Science. 1991 May 10;252(5007):833-6 [PMID: 1902987]
  45. Development. 1995 Jan;121(1):99-111 [PMID: 7867511]
  46. Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20526-31 [PMID: 23184999]
  47. Dev Cell. 2014 Dec 22;31(6):761-73 [PMID: 25535918]
  48. Curr Opin Genet Dev. 2021 Aug;69:129-139 [PMID: 33848958]
  49. J Genet. 2010 Sep;89(3):333-9 [PMID: 20877000]
  50. Nat Protoc. 2013 Aug;8(8):1494-512 [PMID: 23845962]
  51. Trends Genet. 2012 Apr;28(4):175-84 [PMID: 22425532]
  52. Sci Rep. 2012;2:602 [PMID: 22924109]
  53. Cell. 1989 Mar 24;56(6):997-1010 [PMID: 2493994]
  54. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]

Grants

  1. T32 HD049336/NICHD NIH HHS
  2. /This work was supported in part through generous funding from the National Science Foundation [Grant no. 2243725 and 1901680 to APM] and was performed while E.M.N. was funded by the National Institutes of Health [T32-HD049336]. Additional support was provided by the Bloomington High School South Senior Internship Program to L.C.M.

MeSH Term

Animals
Coleoptera
Female
Male
Sex Determination Processes
Sex Characteristics
RNA Interference
Insect Proteins

Chemicals

Insect Proteins

Word Cloud

Created with Highcharts 10.0.0sexdeterminationRNAidoublesexmorphologicalsomaticpathwaysexualfemalesmalestraitexpressionstrikingsex-specificdevelopmentmodelevolutionarylabilitydimorphismsdiversificationDigitonthophagustargetingtransformertrachromosomallargelynormallysplicingintersexfoundderivedSex-specificrepresentsdimensionvariationwithinacrossspeciesmechanismsinstructingorganwellstudiedsmallnumberinsectsystemssuggestingconservationpartshintingpossibleothersHoweverresolutionphenomenonnecessitatesadditionaltaxonsamplingparticularlygroupsundergonesignificantelaborationfunctionallyinvestigategazelledungbeetlegazellaemergingsystemstudyevolutionfindRNAinterferencecauseddeveloptraitsindistinguishableobservedsufficientinducemale-specificisoformleavingunaffectedphenocopypreviouslydescribedphenotypesfemalemalebeetlesfindingsmatchpredictionsmodelscascadedevelopedstudiesDrosophilamelanogastercontrasteffortstargettransformer2viaresultedhighjuvenilemortalityappearaffectwhereasSex-lethaltwoputativeorthologshermaphroditeyieldedobviousphenotypicmodificationseitherraisingpossibilityfunctionsubsetgenesmayselectDipterathusnonrepresentativerolesholometabolousordersresultshelpilluminatedifferentialcontributedextraordinarynatureConservedSomaticSexDeterminationCascadeInstructsTrait-SpecificSexualDimorphismHornedDungBeetlesdimorphism

Similar Articles

Cited By