Microbial Community Metabolism of Coral Reef Exometabolomes Broadens the Chemodiversity of Labile Dissolved Organic Matter.

Zachary A Quinlan, Craig E Nelson, Irina Koester, Daniel Petras, Louis-Felix Nothias, Jacqueline Comstock, Brandie M White, Lihini I Aluwihare, Barbara A Bailey, Craig A Carlson, Pieter C Dorrestein, Andreas F Haas, Linda Wegley Kelly
Author Information
  1. Zachary A Quinlan: Scripps Institution of Oceanography, UC San Diego, La Jolla, California, USA. ORCID
  2. Craig E Nelson: Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, School of Ocean and Earth Science and Technology, University of Hawai'i at M��noa, Honolulu, Hawai'i, USA. ORCID
  3. Irina Koester: Scripps Institution of Oceanography, UC San Diego, La Jolla, California, USA.
  4. Daniel Petras: Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, California, USA.
  5. Louis-Felix Nothias: Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, California, USA.
  6. Jacqueline Comstock: Department of Ecology, Evolution and Marine Biology and Marine Science Institute, University of California, Santa Barbara, California, USA.
  7. Brandie M White: Department of Mathematics and Statistics, San Diego State University, San Diego, California, USA.
  8. Lihini I Aluwihare: Scripps Institution of Oceanography, UC San Diego, La Jolla, California, USA.
  9. Barbara A Bailey: Department of Mathematics and Statistics, San Diego State University, San Diego, California, USA.
  10. Craig A Carlson: Department of Ecology, Evolution and Marine Biology and Marine Science Institute, University of California, Santa Barbara, California, USA.
  11. Pieter C Dorrestein: Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, California, USA.
  12. Andreas F Haas: NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Texel, the Netherlands.
  13. Linda Wegley Kelly: Scripps Institution of Oceanography, UC San Diego, La Jolla, California, USA. ORCID

Abstract

Dissolved organic matter (DOM) comprises diverse compounds with variable bioavailability across aquatic ecosystems. The sources and quantities of DOM can influence microbial growth and community structure with effects on biogeochemical processes. To investigate the chemodiversity of labile DOM in tropical reef waters, we tracked microbial utilisation of over 3000 untargeted mass spectrometry ion features exuded from two coral and three algal species. Roughly half of these features clustered into over 500 biologically labile spectral subnetworks annotated to diverse structural superclasses, including benzenoids, lipids, organic acids, heterocyclics and phenylpropanoids, comprising on average one-third of the ion richness and abundance within each chemical class. Distinct subsets of these labile compounds were exuded by algae and corals during the day and night, driving differential microbial growth and substrate utilisation. This study expands the chemical diversity of labile marine DOM with implications for carbon cycling in coastal environments.

Keywords

References

  1. Nucleic Acids Res. 2019 Oct 10;47(18):e103 [PMID: 31269198]
  2. Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10227-32 [PMID: 24982156]
  3. Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2710-5 [PMID: 24550299]
  4. Nat Biotechnol. 2021 Apr;39(4):462-471 [PMID: 33230292]
  5. Bioinformatics. 2018 Jul 1;34(13):i333-i340 [PMID: 29949965]
  6. Bioinformatics. 2004 Jan 22;20(2):289-90 [PMID: 14734327]
  7. ISME J. 2013 May;7(5):962-79 [PMID: 23303369]
  8. Nucleic Acids Res. 2013 Jan 7;41(1):e1 [PMID: 22933715]
  9. Appl Environ Microbiol. 2013 Sep;79(17):5112-20 [PMID: 23793624]
  10. PLoS Biol. 2010 Mar 30;8(3):e1000345 [PMID: 20361023]
  11. ISME Commun. 2022 Oct 17;2(1):101 [PMID: 37938276]
  12. Bioresour Technol. 2018 Oct;266:60-67 [PMID: 29957291]
  13. Funct Ecol. 2022 Aug;36(8):2104-2118 [PMID: 36247100]
  14. Nat Microbiol. 2016 Apr 25;1(6):16042 [PMID: 27572833]
  15. Environ Microbiol. 2010 Mar;12(3):616-27 [PMID: 19930445]
  16. ISME J. 2013 Feb;7(2):281-98 [PMID: 22931830]
  17. Appl Environ Microbiol. 2009 Dec;75(23):7537-41 [PMID: 19801464]
  18. Proc Natl Acad Sci U S A. 2022 Feb 1;119(5): [PMID: 35101918]
  19. Sci Rep. 2019 Dec 4;9(1):18279 [PMID: 31797896]
  20. PeerJ. 2013 Jul 16;1:e108 [PMID: 23882445]
  21. PeerJ. 2017 Jun 21;5:e3423 [PMID: 28649468]
  22. Nat Protoc. 2020 Jun;15(6):1954-1991 [PMID: 32405051]
  23. Ann Rev Mar Sci. 2013;5:421-45 [PMID: 22881353]
  24. PLoS One. 2012;7(9):e43233 [PMID: 22970122]
  25. ISME J. 2021 Jun;15(6):1628-1640 [PMID: 33564111]
  26. Environ Microbiol. 2022 Nov;24(11):5408-5424 [PMID: 36222155]
  27. Environ Microbiol. 2020 Jan;22(1):499-519 [PMID: 31743949]
  28. ISME J. 2009 Dec;3(12):1374-86 [PMID: 19626056]
  29. Anal Chem. 2021 Mar 23;93(11):4809-4817 [PMID: 33689314]
  30. J Cheminform. 2016 Nov 4;8:61 [PMID: 27867422]
  31. PLoS One. 2011;6(11):e27973 [PMID: 22125645]
  32. Nat Commun. 2021 Jun 22;12(1):3832 [PMID: 34158495]
  33. Ecol Lett. 2006 Jul;9(7):835-45 [PMID: 16796574]
  34. FEMS Microbiol Rev. 2017 Jul 1;41(4):575-595 [PMID: 28486655]
  35. Ann Rev Mar Sci. 2015;7:185-205 [PMID: 25062478]
  36. Microbiome. 2019 Jun 21;7(1):94 [PMID: 31227022]
  37. Sci Rep. 2020 Nov 16;10(1):19881 [PMID: 33199772]
  38. Front Microbiol. 2019 Sep 24;10:2244 [PMID: 31608047]
  39. Proc Natl Acad Sci U S A. 2010 Sep 21;107(38):16420-7 [PMID: 20807744]
  40. Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):453-7 [PMID: 25548163]
  41. Nat Biotechnol. 2016 Aug 9;34(8):828-837 [PMID: 27504778]
  42. Trends Microbiol. 2012 Dec;20(12):621-8 [PMID: 22944243]
  43. PeerJ. 2016 Oct 18;4:e2584 [PMID: 27781170]
  44. Front Microbiol. 2019 Nov 08;10:2397 [PMID: 31781048]
  45. PLoS One. 2008 Feb 27;3(2):e1584 [PMID: 18301735]
  46. Nat Methods. 2020 Sep;17(9):905-908 [PMID: 32839597]
  47. Front Microbiol. 2020 Sep 25;11:588778 [PMID: 33101262]
  48. Nat Commun. 2019 Apr 12;10(1):1691 [PMID: 30979882]
  49. Commun Biol. 2023 Aug 31;6(1):896 [PMID: 37653089]
  50. Sci Rep. 2015 Mar 09;5:8852 [PMID: 25747523]
  51. Metabolites. 2022 Dec 16;12(12): [PMID: 36557313]
  52. Nat Rev Microbiol. 2007 Oct;5(10):782-91 [PMID: 17853906]
  53. Ann Rev Mar Sci. 2023 Jan 16;15:431-460 [PMID: 36100218]
  54. Environ Microbiol. 2017 Sep;19(9):3450-3464 [PMID: 28618153]
  55. Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):3143-51 [PMID: 26951682]
  56. Biol Rev Camb Philos Soc. 2009 Feb;84(1):1-17 [PMID: 19046402]
  57. Appl Environ Microbiol. 2011 Nov;77(21):7490-8 [PMID: 21742918]
  58. BMC Bioinformatics. 2010 Jul 23;11:395 [PMID: 20650010]

Grants

  1. OCE-1637396/US National Science Foundation, Moorea Coral Reef Long-Term Ecological Research
  2. OCE-2023298/US National Science Foundation
  3. OCE-2023509/US National Science Foundation
  4. OCE-2118617/US National Science Foundation
  5. OCE-2118618/US National Science Foundation
  6. GRFP-2019252845/US National Science Foundation
  7. ProjectA/AS-1/National Oceanic and Atmospheric Administration
  8. NA24OARX417C0024-T1-01/University of Hawaii Sea Grant College Program, School of Ocean and Earth Science and Technology (SOEST)
  9. 4949/Hawaii Sea Grant publication
  10. 11904/SOEST

MeSH Term

Coral Reefs
Animals
Anthozoa
Microbiota
Organic Chemicals
Seawater
Bacteria
Metabolome
Ecosystem

Chemicals

Organic Chemicals

Word Cloud

Created with Highcharts 10.0.0DOMlabileorganicmicrobialDissolvedmatterdiversecompoundsgrowthutilisationmassspectrometryionfeaturesexudedcoralchemicalmarinecomprisesvariablebioavailabilityacrossaquaticecosystemssourcesquantitiescaninfluencecommunitystructureeffectsbiogeochemicalprocessesinvestigatechemodiversitytropicalreefwaterstracked3000untargetedtwothreealgalspeciesRoughlyhalfclustered500biologicallyspectralsubnetworksannotatedstructuralsuperclassesincludingbenzenoidslipidsacidsheterocyclicsphenylpropanoidscomprisingaverageone-thirdrichnessabundancewithinclassDistinctsubsetsalgaecoralsdaynightdrivingdifferentialsubstratestudyexpandsdiversityimplicationscarboncyclingcoastalenvironmentsMicrobialCommunityMetabolismCoralReefExometabolomesBroadensChemodiversityLabileOrganicMatterreefsdissolvedexometabolomemicrobesmolecularnetworkingtandem

Similar Articles

Cited By