Comparative Analysis of Nuclear (Ef1��) and Mitochondrial (mt-CO1 and mt-Nad5) Markers for Molecular Characterization of Sheep Isolates of Echinococcus granulosus sensu lato.

Seyma Gunyakti Kilinc, Harun Kaya Kesik, Figen Celik, Sami Simsek
Author Information
  1. Seyma Gunyakti Kilinc: Department of Parasitology, Faculty of Veterinary Medicine, Bingol University, Bingol, Turkey.
  2. Harun Kaya Kesik: Department of Parasitology, Faculty of Veterinary Medicine, Bingol University, Bingol, Turkey.
  3. Figen Celik: Department of Parasitology, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey.
  4. Sami Simsek: Department of Parasitology, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey. ORCID

Abstract

BACKGROUND: Echinococcus granulosus is a zoonotic disease that is widespread worldwide.
OBJECTIVE: This study aimed to determine the genetic diversity of E. granulosus isolates in Sheep. Partial mitochondrial and nuclear gene sequences were used to determine intraspecific variation.
METHODS: For this purpose, 41 Sheep hydatid cyst isolates were collected from slaughterhouses in Elazig and Bingol provinces of T��rkiye. Following genomic DNA isolation from the germinal membrane of the cysts, PCR amplification and subsequent DNA sequence analysis were performed using primers that amplify mitochondrial CO1, Nad5, and nuclear ef1�� gene regions.
RESULTS: DNA sequence analyses of mt-CO1 (1603 bp) and mt-Nad5 (625 bp) gene regions showed that 39 out of 41 isolates were identified as G1 and two isolates as G3. When the phylogenies formed by the sequences belonging to different gene regions were evaluated; in the phylogenetic tree created with the mt-CO1 and Nad5 gene dataset, G1 and G3 isolates were in separate clades with the reference sequences, while in the phylogenetic tree created with the nuclear gene region ef1�� dataset, the isolate belonging to the G3 genotype (ef1a.01) formed a sister clade with the G1 genotypes and the reference sequence. According to the haplotype network results obtained, 14 haplotypes, 15 haplotypes, and two haplotypes were determined for mt-CO1, mt-Nad5, and ef1�� gene regions, respectively. Haplotype analysis of mt-CO1 and mt-Nad5 gene regions revealed high haplotype and low nucleotide diversity. Low nucleotide diversity was detected, and two haplotypes were determined as a result of haplotype analysis ef1�� (1343 bp) gene.

Keywords

References

  1. Mol Biol Evol. 2017 Dec 1;34(12):3299-3302 [PMID: 29029172]
  2. Parasitol Res. 2021 Jun;120(6):2077-2086 [PMID: 33864104]
  3. Acta Trop. 2024 Apr;252:107124 [PMID: 38262573]
  4. Parasitology. 2020 Aug;147(9):1055-1062 [PMID: 32404231]
  5. Vet Parasitol. 2015 Oct 30;213(3-4):76-84 [PMID: 26264250]
  6. Int J Parasitol. 2015 Feb;45(2-3):161-6 [PMID: 25479251]
  7. Acta Trop. 2012 Sep;123(3):154-63 [PMID: 22569565]
  8. Int J Parasitol. 2013 Nov;43(12-13):1017-29 [PMID: 23872521]
  9. Int J Parasitol. 1993 Nov;23(7):969-72 [PMID: 8106191]
  10. Vet Parasitol. 2024 Dec;332:110320 [PMID: 39383687]
  11. Int J Parasitol. 2008 Jun;38(7):861-8 [PMID: 18062973]
  12. Parasite. 2020;27:41 [PMID: 32500855]
  13. Genetics. 1989 Nov;123(3):585-95 [PMID: 2513255]
  14. Parasit Vectors. 2021 Jul 20;14(1):369 [PMID: 34284817]
  15. Mol Biol Evol. 2018 Jun 1;35(6):1547-1549 [PMID: 29722887]
  16. Pathogens. 2022 Apr 28;11(5): [PMID: 35631040]
  17. Genetics. 1997 Oct;147(2):915-25 [PMID: 9335623]
  18. Vet Parasitol. 2011 Jun 10;178(3-4):367-9 [PMID: 21310536]
  19. Int J Parasitol. 2002 May;32(5):527-31 [PMID: 11943225]
  20. Int J Parasitol. 2018 Aug;48(9-10):729-742 [PMID: 29782829]
  21. Mol Phylogenet Evol. 2011 Dec;61(3):628-38 [PMID: 21907295]
  22. Infect Genet Evol. 2018 Oct;64:178-184 [PMID: 29936039]
  23. Parasitol Int. 2010 Jun;59(2):290-3 [PMID: 20304093]
  24. Parasitol Int. 2012 Dec;61(4):599-603 [PMID: 22668837]
  25. Int J Parasitol. 2010 Mar 1;40(3):379-85 [PMID: 19800346]
  26. Curr Res Parasitol Vector Borne Dis. 2022 Jun 11;2:100094 [PMID: 35800064]
  27. Acta Trop. 2019 Nov;199:105099 [PMID: 31356785]
  28. Adv Parasitol. 2017;95:65-109 [PMID: 28131366]
  29. Acta Parasitol. 2021 Dec;66(4):1538-1547 [PMID: 34121135]
  30. Acta Trop. 2022 Oct;234:106616 [PMID: 35901920]
  31. Mol Biochem Parasitol. 1992 Sep;54(2):165-73 [PMID: 1435857]
  32. Turkiye Parazitol Derg. 2019 Sep 10;43(3):123-129 [PMID: 31502802]
  33. Parasitology. 2009 Mar;136(3):317-28 [PMID: 19154654]
  34. Vet Parasitol. 2020 Jun;282:109132 [PMID: 32417601]
  35. Parasitology. 2018 Dec;145(14):1929-1937 [PMID: 29781421]
  36. Trans R Soc Trop Med Hyg. 2014 Nov;108(11):706-14 [PMID: 25213876]
  37. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6715-9 [PMID: 6256757]
  38. Genetics. 1993 Mar;133(3):693-709 [PMID: 8454210]

Grants

  1. 122O764/Scientific and Technological Research Council of T��rkiye
  2. 122O764/T��rkiye Bilimsel ve Teknolojik Ara��tirma Kurumu

MeSH Term

Animals
Sheep
Echinococcus granulosus
Sheep Diseases
Echinococcosis
Peptide Elongation Factor 1
Genetic Markers
Genetic Variation
Phylogeny
Sheep, Domestic
Helminth Proteins

Chemicals

Peptide Elongation Factor 1
Genetic Markers
Helminth Proteins

Word Cloud

Created with Highcharts 10.0.0geneisolatesef1��regionsmt-CO1granulosusmt-Nad5haplotypehaplotypesdiversitysheepnuclearsequencesDNAsequenceanalysisG1twoG3EchinococcusdetermineEmitochondrial41Nad5formedbelongingphylogenetictreecreateddatasetreferencedeterminednucleotidesBACKGROUND:zoonoticdiseasewidespreadworldwideOBJECTIVE:studyaimedgeneticPartialusedintraspecificvariationMETHODS:purposehydatidcystcollectedslaughterhousesElazigBingolprovincesT��rkiyeFollowinggenomicisolationgerminalmembranecystsPCRamplificationsubsequentperformedusingprimersamplifyCO1RESULTS:analyses1603 bp625 bpshowed39identifiedphylogeniesdifferentevaluatedseparatecladesregionisolategenotypeef1a01sistercladegenotypesAccordingnetworkresultsobtained1415respectivelyHaplotyperevealedhighlowLowdetectedresult1343 bpComparativeAnalysisNuclearEf1��MitochondrialMarkersMolecularCharacterizationSheepIsolatessensulatoG1/G3mt���CO1mt���Nad5

Similar Articles

Cited By