Diabetes Screening in the Emergency Department: Development of a Predictive Model for Elevated Hemoglobin A1c.

Mary H Smart, Janet Y Lin, Brian T Layden, Yuval Eisenberg, A Simon Pickard, Lisa K Sharp, Kirstie K Danielson, Angela Kong
Author Information
  1. Mary H Smart: Department of Pharmacy Systems, Outcomes and Policy, College of Pharmacy, The University of Illinois Chicago, Chicago, Illinois, USA. ORCID
  2. Janet Y Lin: Department of Emergency Medicine, College of Medicine, The University of Illinois Chicago, Chicago, Illinois, USA. ORCID
  3. Brian T Layden: Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Illinois Chicago, Chicago, Illinois, USA. ORCID
  4. Yuval Eisenberg: Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Illinois Chicago, Chicago, Illinois, USA. ORCID
  5. A Simon Pickard: Department of Pharmacy Systems, Outcomes and Policy, College of Pharmacy, The University of Illinois Chicago, Chicago, Illinois, USA. ORCID
  6. Lisa K Sharp: Department of Biobehavioral Nursing Science, College of Nursing, The University of Illinois Chicago, Chicago, Illinois, USA. ORCID
  7. Kirstie K Danielson: Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Illinois Chicago, Chicago, Illinois, USA. ORCID
  8. Angela Kong: Department of Pharmacy Systems, Outcomes and Policy, College of Pharmacy, The University of Illinois Chicago, Chicago, Illinois, USA. ORCID

Abstract

We developed a prediction model for elevated hemoglobin A1c (HbA1c) among patients presenting to the emergency department (ED) at risk for diabetes to identify important factors that may influence follow-up patient care. Retrospective electronic health records data among patients screened for diabetes at the ED in May 2021 was used. The primary outcome was elevated HbA1c (������5.7%). The data was divided into a derivation set (80%) and a test set (20%) stratified by elevated HbA1c. In the derivation set, we estimated the optimal significance level for backward elimination using a 10-fold cross-validation method. A final model was derived using the entire derivation set and validated on the test set. Performance statistics included C-statistic, sensitivity, specificity, predictive values, Hosmer-Lemeshow test, and Brier score. There were 590 ED patients screened for diabetes in May 2021. The final model included nine variables: age, race/ethnicity, insurance, chief complaints of back pain and fever/chills, and a past medical history of obesity, hyperlipidemia, chronic obstructive pulmonary disease, and substance misuse. Adequate model discrimination (C-statistic = 0.75; sensitivity, specificity, and predictive���values > 0.70), no evidence of model ill fit (Hosmer-Lemeshow test = 0.29), and moderate Brier score (0.21) suggest acceptable model performance. In addition to age, obesity, and hyperlipidemia, a history of substance misuse was identified as an important predictor of elevated HbA1c levels among patients screened for diabetes in the ED. Our findings suggest that substance misuse may be an important factor to consider when facilitating follow-up care for patients identified with prediabetes or diabetes in the ED and warrants further investigation. Future research efforts should also include external validation in larger samples of ED patients.

References

  1. Can Fam Physician. 2017 Jul;63(7):e350-e354 [PMID: 28701461]
  2. J Clin Epidemiol. 1992 Jan;45(1):1-7 [PMID: 1738006]
  3. Diabetes Res Clin Pract. 2018 Aug;142:120-129 [PMID: 29852236]
  4. Ann Transl Med. 2020 Feb;8(4):71 [PMID: 32175364]
  5. Int J Family Med. 2014;2014:842847 [PMID: 24678420]
  6. Diabetologia. 2022 Feb;65(2):275-285 [PMID: 34718834]
  7. Diabetes Care. 2020 Nov 2;: [PMID: 33139407]
  8. BMC Med. 2023 Feb 24;21(1):70 [PMID: 36829188]
  9. Public Health Rep. 2002;117 Suppl 1:S135-45 [PMID: 12435837]
  10. Diabetes Care. 2020 Jan;43(Suppl 1):S14-S31 [PMID: 31862745]
  11. Diabetes Res Clin Pract. 2022 Aug;190:109980 [PMID: 35787415]
  12. Addict Sci Clin Pract. 2018 Mar 12;13(1):13 [PMID: 29530080]
  13. Emerg Med Australas. 2010 Oct;22(5):427-34 [PMID: 21040483]
  14. Nat Commun. 2022 Oct 8;13(1):5930 [PMID: 36209210]
  15. Ecol Lett. 2022 Aug;25(8):1741-1745 [PMID: 35672133]
  16. BMC Med. 2015 Jan 06;13:1 [PMID: 25563062]
  17. J Clin Epidemiol. 2008 Oct;61(10):1009-17.e1 [PMID: 18539429]
  18. Ann Intern Med. 2009 Jun 2;150(11):812-4 [PMID: 19487716]
  19. Crit Care Med. 2020 May;48(5):623-633 [PMID: 32141923]
  20. Lancet Diabetes Endocrinol. 2020 Mar;8(3):239-248 [PMID: 31958403]
  21. Am J Emerg Med. 2023 Jul;69:121-126 [PMID: 37087809]
  22. Epidemiol Rev. 2011;33:46-62 [PMID: 21622851]
  23. Med J Aust. 2010 Feb 15;192(4):197-202 [PMID: 20170456]
  24. AMIA Annu Symp Proc. 2015 Nov 05;2015:2035-42 [PMID: 26958303]
  25. Drug Alcohol Depend. 2018 May 1;186:86-93 [PMID: 29554592]
  26. J Gen Intern Med. 2019 Nov;34(11):2610-2619 [PMID: 31428988]
  27. J Urban Health. 2016 Jun;93(3):456-67 [PMID: 27193595]
  28. Front Public Health. 2023 Mar 16;11:1122455 [PMID: 37006591]
  29. JAMA. 2021 Aug 24;326(8):736-743 [PMID: 34427594]
  30. J Clin Epidemiol. 2021 Apr;132:142-145 [PMID: 33775387]
  31. Diabetes Care. 2003 Mar;26(3):725-31 [PMID: 12610029]
  32. Emerg Med J. 2018 Apr;35(4):220-225 [PMID: 29311114]
  33. Ann Emerg Med. 2019 Mar;73(3):225-235 [PMID: 30798793]
  34. BMC Public Health. 2018 Mar 20;18(1):366 [PMID: 29554894]
  35. Diabetes Care. 2008 May;31(5):1040-5 [PMID: 18070993]
  36. PLoS One. 2014 May 22;9(5):e97865 [PMID: 24852786]
  37. MMWR Morb Mortal Wkly Rep. 2023 Sep 29;72(39):1073 [PMID: 37768878]
  38. Epidemiology. 2010 Jan;21(1):128-38 [PMID: 20010215]
  39. Biom J. 2023 Dec;65(8):e2200302 [PMID: 37466257]
  40. Cureus. 2018 Sep 4;10(9):e3247 [PMID: 30416898]
  41. JAMA Netw Open. 2023 Jan 3;6(1):e2253275 [PMID: 36701158]
  42. Med Care. 2016 Aug;54(8):796-803 [PMID: 27219636]
  43. Acad Emerg Med. 2008 Dec;15(12):1241-7 [PMID: 18785943]
  44. Addict Sci Clin Pract. 2018 Apr 9;13(1):8 [PMID: 29628018]

MeSH Term

Humans
Glycated Hemoglobin
Emergency Service, Hospital
Female
Male
Retrospective Studies
Middle Aged
Adult
Mass Screening
Aged
Diabetes Mellitus
Predictive Value of Tests
Electronic Health Records
Risk Factors

Chemicals

Glycated Hemoglobin
hemoglobin A1c protein, human

Word Cloud

Created with Highcharts 10.0.0modelpatientsEDdiabetessetelevatedHbA1ctest0amongimportantscreenedderivationsubstancemisuseA1cmayfollow-upcaredataMay2021usingfinalincludedC-statisticsensitivityspecificityHosmer-LemeshowBrierscoreagehistoryobesityhyperlipidemia=suggestidentifieddevelopedpredictionhemoglobinpresentingemergencydepartmentriskidentifyfactorsinfluencepatientRetrospectiveelectronichealthrecordsusedprimaryoutcome������57%divided80%20%stratifiedestimatedoptimalsignificancelevelbackwardelimination10-foldcross-validationmethodderivedentirevalidatedPerformancestatisticspredictivevalues590ninevariables:race/ethnicityinsurancechiefcomplaintsbackpainfever/chillspastmedicalchronicobstructivepulmonarydiseaseAdequatediscrimination75predictive���values>70evidenceillfit29moderate21acceptableperformanceadditionpredictorlevelsfindingsfactorconsiderfacilitatingprediabeteswarrantsinvestigationFutureresearcheffortsalsoincludeexternalvalidationlargersamplesDiabetesScreeningEmergencyDepartment:DevelopmentPredictiveModelElevatedHemoglobin

Similar Articles

Cited By

No available data.