Polydopamine-based Nanoadjuvants Promote a Positive Feedback Loop for Cancer Immunotherapy via Overcoming Photothermally Boosted T Cell Exhaustion.

Xiao-Kai Chi, Hai-Rui Zhang, Jing-Jing Gao, Jin Su, Yong-Zhong Du, Xiao-Ling Xu
Author Information
  1. Xiao-Kai Chi: Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China.
  2. Hai-Rui Zhang: Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China.
  3. Jing-Jing Gao: Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China.
  4. Jin Su: College of Pharmacy, Jiamusi University, Jiamusi 154007, PR China.
  5. Yong-Zhong Du: Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China.
  6. Xiao-Ling Xu: Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China.

Abstract

Immunogenic cell death, triggered by photothermal therapy or specific chemotherapy, strives to establish a positive feedback loop in cancer immunotherapy. This loop is characterized by the rapid release of antigens and adenosine triphosphate (ATP), ultimately leading to accelerated T cell infiltration. However, this loop is hindered by T cell exhaustion caused by adenosine originating from ATP and glucose deprivation in the immunosuppressive microenvironment. To overcome this challenge, we developed a pH-low insertion peptide-functionalized mesoporous-polydopamine-based nanoadjuvant that incorporates adenosine deaminase and doxorubicin (termed as PPMAD). PPMAD aimed to overcome T cell exhaustion by reducing adenosine consumption and providing an alternative carbon source for CD8 T cell function during glucose starvation. First, PPMAD triggered the burst release of antigens and ATP through photothermal therapy and doxorubicin-induced immunogenic cell death, culminating in the expedited infiltration of T cells. Second, adenosine deaminase depleted adenosine, reducing immunosuppressive agents and generating abundant inosine, which served as an alternative carbon source for CD8 T cells. By implementing this "reducing suppression and broadening sources" strategy, we successfully overcome T cell exhaustion, greatly enhancing the effectiveness of cancer immunotherapy both in vitro and in vivo. Our findings highlighted the positive feedback loop between on-demand photothermal therapy, chemotherapy immunotherapy, and achieving complete tumor response.

References

  1. Trends Cancer. 2018 Jun;4(6):418-428 [PMID: 29860986]
  2. Pharmacol Rev. 2022 Jul;74(3):797-822 [PMID: 35738682]
  3. J Exp Clin Cancer Res. 2022 Jul 15;41(1):222 [PMID: 35836249]
  4. Biomolecules. 2021 Dec 09;11(12): [PMID: 34944493]
  5. J Control Release. 2017 Jan 28;246:46-59 [PMID: 27993599]
  6. Breast Cancer Res. 2020 Jun 9;22(1):61 [PMID: 32517735]
  7. Cell Mol Immunol. 2020 Aug;17(8):807-821 [PMID: 32612154]
  8. ACS Nano. 2011 Dec 27;5(12):9761-71 [PMID: 22059851]
  9. Expert Opin Ther Targets. 2022 Sep;26(9):791-800 [PMID: 36300278]
  10. Biomolecules. 2022 Mar 08;12(3): [PMID: 35327609]
  11. Cell Metab. 2023 Jan 3;35(1):84-100.e8 [PMID: 36257316]
  12. Nat Commun. 2021 Aug 6;12(1):4755 [PMID: 34362890]
  13. ACS Appl Mater Interfaces. 2017 Sep 13;9(36):30543-30552 [PMID: 28809111]
  14. J Hematol Oncol. 2022 Aug 29;15(1):121 [PMID: 36038913]
  15. Adv Mater. 2013 Mar 6;25(9):1353-9 [PMID: 23280690]
  16. Langmuir. 2016 Nov 22;32(46):12119-12128 [PMID: 27933877]
  17. Annu Rev Pathol. 2022 Jan 24;17:181-204 [PMID: 35073169]
  18. Crit Rev Clin Lab Sci. 2009;46(4):167-89 [PMID: 19650714]
  19. Mol Oncol. 2020 Dec;14(12):2994-3006 [PMID: 33179413]
  20. Mol Metab. 2020 Mar;33:48-66 [PMID: 31395464]
  21. Int J Nanomedicine. 2019 Nov 04;14:8647-8663 [PMID: 31806962]
  22. EBioMedicine. 2021 Nov;73:103627 [PMID: 34656878]
  23. Int J Mol Sci. 2021 Aug 18;22(16): [PMID: 34445610]
  24. Antioxid Redox Signal. 2021 Nov 20;35(15):1308-1323 [PMID: 33587003]
  25. Angew Chem Int Ed Engl. 2019 Jan 14;58(3):670-680 [PMID: 30016571]
  26. J Physiol. 2021 Mar;599(6):1745-1757 [PMID: 33347611]
  27. Biomaterials. 2020 Oct;255:120208 [PMID: 32569862]
  28. Nat Metab. 2020 Jul;2(7):635-647 [PMID: 32694789]
  29. Am J Physiol Endocrinol Metab. 2023 Jan 1;324(1):E1-E8 [PMID: 36416582]
  30. Nat Rev Drug Discov. 2019 Mar;18(3):175-196 [PMID: 30622344]

Word Cloud

Created with Highcharts 10.0.0TcelladenosineloopphotothermaltherapyimmunotherapyATPexhaustionovercomePPMADdeathtriggeredchemotherapypositivefeedbackcancerreleaseantigensinfiltrationglucoseimmunosuppressivedeaminasereducingalternativecarbonsourceCD8cellsImmunogenicspecificstrivesestablishcharacterizedrapidtriphosphateultimatelyleadingacceleratedHoweverhinderedcausedoriginatingdeprivationmicroenvironmentchallengedevelopedpH-lowinsertionpeptide-functionalizedmesoporous-polydopamine-basednanoadjuvantincorporatesdoxorubicintermedaimedconsumptionprovidingfunctionstarvationFirstburstdoxorubicin-inducedimmunogenicculminatingexpeditedSeconddepletedagentsgeneratingabundantinosineservedimplementing"reducingsuppressionbroadeningsources"strategysuccessfullygreatlyenhancingeffectivenessin vitroin vivofindingshighlightedon-demandachievingcompletetumorresponsePolydopamine-basedNanoadjuvantsPromotePositiveFeedbackLoopCancerImmunotherapyviaOvercomingPhotothermallyBoostedCellExhaustion

Similar Articles

Cited By

No available data.