Evaluation of Segmental Myocardial Work and Exercise Tolerance in Hypertension Patients With Left Ventricular Remodeling Through Stress Echocardiography.

Qingfeng Zhang, Yi Wang, Hongmei Zhang, Geqi Ding, Lixue Yin
Author Information
  1. Qingfeng Zhang: School of Medicine, University of Electronic Science and Technology of China, Chengdu, China. ORCID
  2. Yi Wang: Department of Key Laboratory in Cardiac Electrophysiology and Biomechanics and Cardiovascular Ultrasound, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, China. ORCID
  3. Hongmei Zhang: Department of Key Laboratory in Cardiac Electrophysiology and Biomechanics and Cardiovascular Ultrasound, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, China.
  4. Geqi Ding: Department of Key Laboratory in Cardiac Electrophysiology and Biomechanics and Cardiovascular Ultrasound, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, China.
  5. Lixue Yin: School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.

Abstract

PURPOSE: This study aims to elucidate the characteristics of segment myocardial work (MW) and reserve function through exercise stress echocardiography (ESE) and to explore the associations between MW parameters and exercise capacity in patients with left ventricular remodeling due to hypertension (LVRH).
METHODS: A total of 105 patients with LVRH (LVMI ��� 115 g/m for males and LVMI ��� 95 g/mfor females) underwent ESE examination following established guidelines. Additionally, 59 healthy subjects served as a control group. Speckle tracking software was employed for analysis, calculating MW parameters by integrating longitudinal strain with the noninvasive left ventricular pressure curve. Global and segmental myocardial work indices, reserve function, and exercise capacity were evaluated and analyzed.
RESULTS: The global work index (GWI), global constructive work (GCW), and global wasted work (GWW) were significantly elevated both at rest and peak in the LVRH group, whereas global work efficiency (GWE) was reduced. GWI shows an increasing trend from the basal to the apex, The apex segment GWI of the LVRH group exhibited the highest peak value (2754.5 �� 231.0 mmHg), while there was no significant difference in peak GWI at the basal level between the two groups. The GWI-rest and ��GWI showed significant correlation with exercise metabolic equivalent (MET) (r = -0.502, p < 0.001) and diastolic function E/e'-peak (r = 0.612, p <0.001). Multivariable linear regression demonstrated that GWI-rest, ��GWI provided powerful incremental value in independent associations with exercise capacity.
CONCLUSION: MW parameters reflect the contractile force under hemodynamic overload, offering a more compelling perspective for evaluating cardiac function, including segments value. GWI-rest and ��GWI is significantly correlated with exercise endurance in LVRH patients.

Keywords

References

  1. J. Geers, M. L. Luchian, A. Motoc, et al., ���Prognostic Value of Left Ventricular Global Constructive Work in Patients With Cardiac Amyloidosis,��� International Journal of Cardiovascular Imaging 39, no. 3 (2023): 585���593.
  2. Q. Liu, Q. Li, X. Wan, et al., ���The Value of Myocardial Work in the Estimation of Left Ventricular Systolic Function in Patients With Coronary Microvascular Disease: A Study Based on Adenosine Stress Echocardiography,��� Frontiers in Cardiovascular Medicine 10 (2023): 1119785.
  3. T. A. N. Ahmed, H. Shams���Eddin, M. A. Fathy, H. M. El���Naggar, and Y. T. Kishkand, ���Subclinical Left Ventricular Systolic Dysfunction by Two���Dimensional Speckle���Tracking Echocardiography and Its Relation to Ambulatory Arterial Stiffness Index in Hypertensive Patients,��� Journal of Hypertension 38, no. 5 (2020): 864���873.
  4. D. D. Borz��, S. Saladino, V. Losi, et al., ���Strain and Myocardial Work Index During Echo Exercise to Evaluate Eyocardial Function in Athletes,��� Journal of Cardiovascular Echography 32, no. 2 (2022): 82���88.
  5. V. O. Puntmann, E. Arroyo Ucar, R. Hinojar Baydes, et al., ���Aortic Stiffness and Interstitial Myocardial Fibrosis by Native T1 Are Independently Associated With Left Ventricular Remodeling in Patients With Dilated Cardiomyopathy,��� Hypertension 64, no. 4 (2014): 762���768.
  6. A. Jaglan, S. Roemer, A. C. Perez Moreno, and B. K. Khandheria, ���Myocardial Work in Stage 1 and 2 Hypertensive Patients,��� European Heart Journal Cardiovascular Imaging 22, no. 7 (2021): 744���750.
  7. F. Fusco, G. Scognamiglio, A. Merola, et al., ���Advanced Echocardiographic Assessment in Adults With Repaired Aortic Coarctation: Myocardial Work Analysis Provides Novel Insights on Left Ventricular Mechanics,��� International Journal of Cardiovascular Imaging 39, no. 1 (2023): 51���60.
  8. C. B. Martins���Santos, L. T. A. Duarte, C. R. Ferreira���Junior, et al., ���Exaggerated Systolic Blood Pressure Increase With Exercise and Myocardial Ischemia on Exercise Stress Echocardiography. 'Resposta Exagerada da Press��o Arterial Sist��lica ao Exerc��cio e Isquemia Mioc��rdica �� Ecocardiografia sob Estresse F��sico,��� Arquivos Brasileiros de Cardiologia 120, no. 11 (2023): e20230047.
  9. B. Williams, G. Mancia, and W. Spiering, ���ESC/ESH Guidelines for the Management of Arterial Hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Cardiology and the European Society of Hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Cardiology and the European Society of Hypertension,��� Journal of Hypertension 36, no. 10 (2018): 1953���2041.
  10. R. B. Devereux, M. J. Koren, G. de Simone, et al., ���Methods for Detection of Left Ventricular Hypertrophy: Application to Hypertensive Heart Disease,��� European Heart Journal 14, Suppl D (1993): 8���15.
  11. R. M. Lang, L. P. Badano, V. Mor���Avi, et al., ���Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update From the American Society of Echocardiography and the European Association of Cardiovascular Imaging,��� European Heart Journal, Cardiovascular Imaging 17, no. 4 (2016): 412.
  12. M. A. Mendes, I. da Silva, V. Ramires, et al., ���Metabolic Equivalent of Task (METs) Thresholds as an Indicator of Physical Activity Intensity,��� PLOS ONE 13, no. 7 (2018): e0200701.
  13. J. Ding, H. G. Sun, J. Liu, et al., ���Assessment of Left Ventricular Myocardial Work Done by Noninvasive Pressure���strain Loop Technique in Patients With Essential Hypertension,��� Annals of Noninvasive Electrocardiology 27, no. 6 (2022): e12983.
  14. H. R. Tsai, H. C. Hsu, C. I. Wu, et al., ���Effects of Postsystolic Shortening and Diastolic Dyssynchrony on Myocardial Work in Untreated Early Hypertension Patients,��� Journal of Hypertension 40, no. 10 (2022): 1994���2004.
  15. T. S. Clemmensen, H. Eiskj��r, F. Mikkelsen, et al., ���Left Ventricular Pressure���Strain���Derived Myocardial Work at Rest and During Exercise in Patients With Cardiac Amyloidosis,��� Journal of the American Society of Echocardiography 33, no. 5 (2020): 573���582.
  16. Q. Zhao, C. Cui, Y. Li, et al., ���Evaluation of Myocardial Work in Patients With Hypertrophic Cardiomyopathy and Hypertensive Left Ventricular Hypertrophy Based on Non���Invasive Pressure���Strain Loops,��� Frontiers in Cardiovascular Medicine 9 (2022): 767875.
  17. J. Wang, C. Ni, M. Yang, et al., ���Apply Pressure���Strain Loop to Quantify Myocardial Work in Pulmonary Hypertension: A Prospective Cohort Study,��� Frontiers in Cardiovascular Medicine 9 (2022): 1022987.
  18. J. Duchenne, A. Turco, S. ��nl��, et al., ���Left Ventricular Remodeling Results in Homogenization of Myocardial Work Distribution,��� Circulation, Arrhythmia and Electrophysiology 12, no. 5 (2019): e007224.
  19. Y. Guo, C. Yang, X. Wang, et al., ���Regional Myocardial Work Measured by Echocardiography for the Detection of Myocardial Ischemic Segments: A Comparative Study with Invasive Fractional Flow Reserve,��� Frontiers in Cardiovascular Medicine 9 (2022): 813710.
  20. J. Ding, H. G. Sun, J. Liu, et al., ���Assessment of Left Ventricular Myocardial Work Done by Noninvasive Pressure���Strain Loop Technique in Patients With Essential Hypertension,��� Annals of Noninvasive Electrocardiology 27, no. 6 (2022): e12983.
  21. M. Przewlocka���Kosmala, T. H. Marwick, A. Mysiak, et al., ���Usefulness of Myocardial Work Measurement in the Assessment of Left Ventricular Systolic Reserve Response to Spironolactone in Heart Failure With Preserved Ejection Fraction,��� European Heart Journal, Cardiovascular Imaging 20, no. 10 (2019): 1138���1146.
  22. M. Claeys, T. Petit, A. La Gerche, et al., ���Impaired Biventricular Contractile Reserve in Patients With Diastolic Dysfunction: Insights From Exercise Stress Echocardiography,��� European Heart Journal Cardiovascular Imaging 23, no. 8 (2022): 1042���1052.
  23. Y. C. Wang, J. J. Hwang, L. P. Lai, et al., ���Coexistence and Exercise Exacerbation of Intraleft Ventricular Contractile Dyssynchrony in Hypertensive Patients With Diastolic Heart Failure,��� American Heart Journal 154, no. 2 (2007): 278���284.
  24. S. J. Shah, G. L. Aistrup, D. K. Gupta, et al., ���Ultrastructural and Cellular Basis for the Development of Abnormal Myocardial Mechanics During the Transition From Hypertension to Heart Failure,��� American Journal of Physiology Heart and Circulatory Physiology 306, no. 1 (2014): H88���100.
  25. A. P. Lee, J. K. Song, G. W. Yip, et al., ���Importance of Dynamic Dyssynchrony in the Occurrence of Hypertensive Heart Failure With Normal Ejection Fraction,��� European Heart Journal 31, no. 21 (2010): 2642���2649.
  26. F. Sahiti, C. Morbach, C. Henneges, et al., ���Dynamics of Left Ventricular Myocardial Work in Patients Hospitalized for Acute Heart Failure,��� Journal of Cardiac Failure 27, no. 12 (2021): 1393���1403.
  27. S. Cheng, V. W. Li, and Y. F. Cheung, ���Systolic and Diastolic Functional Reserve of the Subpulmonary and Systemic Right Ventricles as Assessed by Pharmacologic and Exercise Stress: A Systematic Review,��� Echocardiography 39, no. 2 (2022): 310���329.
  28. Y. Su, Q. Peng, L. Yin, and C. Li, ���Evaluation of Exercise Tolerance in Non���Obstructive Hypertrophic Cardiomyopathy With Myocardial Work and Peak Strain Dispersion by Speckle���Tracking Echocardiography,��� Frontiers in Cardiovascular Medicine 9 (2022): 927671.
  29. Z. Zhang, J. Tang, J. Song, et al., ���Elabela Alleviates Ferroptosis, Myocardial Remodeling, Fibrosis and Heart Dysfunction in Hypertensive Mice by Modulating the IL���6/STAT3/GPX4 Signaling,��� Free Radical Biology & Medicine 181 (2022): 130���142.
  30. R. B. McCully, V. L. Roger, D. W. Mahoney, et al., ���Outcome After Normal Exercise Echocardiography and Predictors of Subsequent Cardiac Events: Follow���Up of 1,325 Patients,��� Journal of the American College of Cardiology 31, no. 1 (1998): 144���149.

Grants

  1. 2023NSFSC0641/Sichuan Provincial Natural Science Foundation
  2. 2022NSFS0605/Sichuan science and technology project

MeSH Term

Humans
Male
Female
Ventricular Remodeling
Middle Aged
Echocardiography, Stress
Exercise Tolerance
Hypertension
Heart Ventricles
Ventricular Function, Left

Word Cloud

Created with Highcharts 10.0.0workexerciseLVRHMWfunctionglobalGWImyocardialparameterscapacitypatientsgrouppeakvalueGWI-rest��GWIsegmentreservestressESEassociationsleftventricularhypertensionLVMIsignificantlybasalapexsignificantr=001PURPOSE:studyaimselucidatecharacteristicsechocardiographyexploreremodelingdueMETHODS:total105��� 115 g/mmales��� 95 g/mforfemalesunderwentexaminationfollowingestablishedguidelinesAdditionally59healthysubjectsservedcontrolSpeckletrackingsoftwareemployedanalysiscalculatingintegratinglongitudinalstrainnoninvasivepressurecurveGlobalsegmentalindicesevaluatedanalyzedRESULTS:indexconstructiveGCWwastedGWWelevatedrestwhereasefficiencyGWEreducedshowsincreasingtrendexhibitedhighest27545��2310 mmHgdifferenceleveltwogroupsshowedcorrelationmetabolicequivalentMET-0502p < 0diastolicE/e'-peak0612p<0MultivariablelinearregressiondemonstratedprovidedpowerfulincrementalindependentCONCLUSION:reflectcontractileforcehemodynamicoverloadofferingcompellingperspectiveevaluatingcardiacincludingsegmentscorrelatedenduranceEvaluationSegmentalMyocardialWorkExerciseToleranceHypertensionPatientsLeftVentricularRemodelingStressEchocardiographypressure���strainloop

Similar Articles

Cited By

No available data.