Regression analysis of clustered current status data with informative cluster size under a transformed survival model.

Yanqin Feng, Shijiao Yin, Jieli Ding
Author Information
  1. Yanqin Feng: School of Mathematics and Statistics, 12390 Wuhan University , Wuhan, 430072, P.R. China.
  2. Shijiao Yin: School of Mathematics and Statistics, 12390 Wuhan University , Wuhan, 430072, P.R. China.
  3. Jieli Ding: School of Mathematics and Statistics, 12390 Wuhan University , Wuhan, 430072, P.R. China.

Abstract

In this paper, we study inference methods for regression analysis of clustered current status data with informative cluster sizes. When the correlated failure times of interest arise from a general class of semiparametric transformation frailty models, we develop a nonparametric maximum likelihood estimation based method for regression analysis and conduct an expectation-maximization algorithm to implement it. The asymptotic properties including consistency and asymptotic normality of the proposed estimators are established. Extensive simulation studies are conducted and indicate that the proposed method works well. The developed approach is applied to analyze a real-life data set from a tumorigenicity study.

Keywords

References

  1. Sun, J. The statistical analysis of interval-censored failure time data . New York: Springer; 2006.
  2. Huang, J. Efficient estimation for the proportional hazards model with interval censoring. Ann Stat 1996;24:540���68. https://doi.org/10.1214/aos/1032894452 . [DOI: 10.1214/aos/1032894452]
  3. Wang, N, Wang, L, Mcmahan, CS. Regression analysis of bivariate current status data under the gamma-frailty proportional hazardsmodel using the EM algorithm. Comput Stat Data Anal 2015;83:140���50. https://doi.org/10.1016/j.csda.2014.10.013 . [DOI: 10.1016/j.csda.2014.10.013]
  4. Hu, T, Zhou, Q, Sun, J. Regression analysis of bivariate current status data under the proportional hazards model. Can J Stat 2017;45:410���24. https://doi.org/10.1002/cjs.11344 . [DOI: 10.1002/cjs.11344]
  5. Lin, D, Oakes, D, Ying, Z. Additive hazards regression with current status data. Biometrika 1998;85:289���98. https://doi.org/10.1093/biomet/85.2.289 . [DOI: 10.1093/biomet/85.2.289]
  6. Kulich, M, Lin, DY. Additive hazards regression for case-cohort studies. Biometrika 2000;87:73���87. https://doi.org/10.1093/biomet/87.1.73 . [DOI: 10.1093/biomet/87.1.73]
  7. Feng, Y, Sun, J, Ma, L. Regression analysis of current status data under the additive hazards model with auxiliary covariates. Scand J Stat 2015;42:118���36. https://doi.org/10.1111/sjos.12098 . [DOI: 10.1111/sjos.12098]
  8. Li, H, Zhang, H, Sun, J. Estimation of the additive hazards model with current status data in the presence of informative censoring. Stat Interface 2019;12:321���30. https://doi.org/10.4310/sii.2019.v12.n2.a12 . [DOI: 10.4310/sii.2019.v12.n2.a12]
  9. Cong, X, Yin, G, Shen, Y. Marginal analysis of correlated failure time data with informative cluster sizes. Biometrics 2007;63:663���72. https://doi.org/10.1111/j.1541-0420.2006.00730.x . [DOI: 10.1111/j.1541-0420.2006.00730.x]
  10. Chen, L, Feng, Y, Sun, J. Regression analysis of clustered failure time data with informative cluster size under the additive transformation models. Lifetime Data Anal 2017;23:651���70. https://doi.org/10.1007/s10985-016-9384-x . [DOI: 10.1007/s10985-016-9384-x]
  11. Feng, Y, Lin, S, Li, Y. Semiparametric regression of clustered current status data. J Appl Stat 2019;46:1724���37. https://doi.org/10.1080/02664763.2018.1564022 . [DOI: 10.1080/02664763.2018.1564022]
  12. Feng, Y, Prasangika, KD, Zuo, G. Regression analysis of multivariate current status data under a varying coefficients additive hazards frailty model. Can J Stat 2023;51:216���34.
  13. Li, J, Ma, S. Interval-censored data with repeated measurements and a cured subgroup. J R Stat Soc C-Appl 2010;59:693���705. https://doi.org/10.1111/j.1467-9876.2009.00702.x . [DOI: 10.1111/j.1467-9876.2009.00702.x]
  14. Shao, F, Li, J, Ma, S, Lee, M-LT. Semiparametric varying-coefficient model for interval censored data with a cured proportion. Stat Med 2014;33:1700���12. https://doi.org/10.1002/sim.6054 . [DOI: 10.1002/sim.6054]
  15. Rosner, B, Bay, C, Glynn, RJ, Ying, G, Maguire, MG, Lee, MLT. Estimation and testing for clustered interval-censored bivariate survival data with application using the semi-parametric version of the Clayton-Oakes model. Lifetime Data Anal 2023;29:854���87. https://doi.org/10.1007/s10985-022-09588-y . [DOI: 10.1007/s10985-022-09588-y]
  16. Finkelstein, DM. A proportional hazards model for interval-censored failure time data. Biometrics 1986;4:845���54. https://doi.org/10.2307/2530698 . [DOI: 10.2307/2530698]
  17. Pan, W. A multiple imputation approach to Cox regression with interval-censored data. Biometrics 2000;56:199���203. https://doi.org/10.1111/j.0006-341x.2000.00199.x . [DOI: 10.1111/j.0006-341x.2000.00199.x]
  18. Sun, J, Feng, Y, Zhao, H. Simple estimation procedures for regression analysis of interval-censored failure time data under the proportional hazards model. Lifetime Data Anal 2015;21:138���55. https://doi.org/10.1007/s10985-013-9282-4 . [DOI: 10.1007/s10985-013-9282-4]
  19. Wen, C, Chen, Y. Nonparametric maximum likelihood analysis of clustered current status data with the gamma-frailty Cox model. Comput Stat Data Anal 2011;55:1053���60. https://doi.org/10.1016/j.csda.2010.08.013 . [DOI: 10.1016/j.csda.2010.08.013]
  20. Su, Y, Wang, J. Semiparametric efficient estimation for shared-frailty models with doubly censored clustered data. Ann Stat 2016;44:1298���331. https://doi.org/10.1214/15-aos1406 . [DOI: 10.1214/15-aos1406]
  21. Li, S, Hu, T, Zhao, S, Sun, J. Regression analysis of multivariate current status data with semiparametric transformation frailty models. Stat Sin 2020;30:1117���34. https://doi.org/10.5705/ss.202017.0156 . [DOI: 10.5705/ss.202017.0156]
  22. Lou, Y, Wang, P, Sun, J. A semi-parametric weighted likelihood approach for regression analysis of bivariate interval-censored outcomes from case-cohort studies. Lifetime Data Anal 2023;29:628���53. https://doi.org/10.1007/s10985-023-09593-9 . [DOI: 10.1007/s10985-023-09593-9]
  23. Chen, K, Jin, Z, Ying, Z. Semiparametric analysis of transformation models with censored data. Biometrika 2002;89:659���68. https://doi.org/10.1093/biomet/89.3.659 . [DOI: 10.1093/biomet/89.3.659]
  24. Zeng, D, Mao, L, Lin, DY. Maximum likelihood estimation for semiparametric transformation models with interval-censored data. Biometrika 2016;103:253���71. https://doi.org/10.1093/biomet/asw013 . [DOI: 10.1093/biomet/asw013]
  25. Williamson, JM, Datta, S, Satten, GA. Marginal analyses of clustered data when cluster size Is informative. Biometrics 2003;59:36���42. https://doi.org/10.1111/1541-0420.00005 . [DOI: 10.1111/1541-0420.00005]
  26. Nelson, KP, Lipsitz, SR, Fitzmaurice, GM, Ibrahim, J, Parzen, M, Strawderman, R. Use of the probability integral transformation to fit nonlinear mixed-effects models with nonnormal random effects. J Comput Graph Stat 2006;15:39���57. https://doi.org/10.1198/106186006x96854 . [DOI: 10.1198/106186006x96854]
  27. National Toxicology Program . Toxicology and carcinogenesis studies of chloroprene (case no. 126-99-8) in F344/N rats and B6C3F1 mice (inhalation studies) Technical Report 467. Bethesda, Maryland: U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health; 1998.
  28. Wang, L, Sun, J, Tong, X. Efficient estimation for the proportional hazards model with bivariate current status data. Lifetime Data Anal 2008;14:134���53. https://doi.org/10.1007/s10985-007-9058-9 . [DOI: 10.1007/s10985-007-9058-9]
  29. van der Vaart, AW, Wellner, JA. Weak convergence and empirical processes . New York: Springer; 1996.
  30. Elbers, C, Ridder, G. True and spurious duration dependence: the identifiability of the proportional hazard model. Rev Econ Stud 1982;49:403���9. https://doi.org/10.2307/2297364 . [DOI: 10.2307/2297364]
  31. Murphy, SA. Asymptotic theory for the frailty model. Ann Stat 1995;23:182���98. https://doi.org/10.1214/aos/1176324462 . [DOI: 10.1214/aos/1176324462]
  32. Bickel, PJ, Klaassen, CAJ, Ritov, Y, Wellner, JA. Efficient and adaptive estimation for semiparametric models . Baltimore, MD: Johns Hopkins University Press; 1993.
  33. Rudin, W. Functional analysis . New York, NY: McGraw-Hill; 1973.

Word Cloud

Created with Highcharts 10.0.0dataanalysisclusteredcurrentstatusstudyregressioninformativeclustersemiparametrictransformationfrailtymodelsnonparametricmaximumlikelihoodmethodexpectation-maximizationalgorithmasymptoticproposedpaperinferencemethodssizescorrelatedfailuretimesinterestarisegeneralclassdevelopestimationbasedconductimplementpropertiesincludingconsistencynormalityestimatorsestablishedExtensivesimulationstudiesconductedindicateworkswelldevelopedapproachappliedanalyzereal-lifesettumorigenicityRegressionsizetransformedsurvivalmodel

Similar Articles

Cited By

No available data.