Brain network alterations in mobile phone use problem severity: A multimodal neuroimaging analysis.

Lichang Yao, Keigo Hikida, Yinping Lu, Luyao Wang, Qi Dai, Morio Aki, Mami Shibata, Halwa Zakia, Jiajia Yang, Naoya Oishi, Shisei Tei, Toshiya Murai, Zhilin Zhang, Hironobu Fujiwara
Author Information
  1. Lichang Yao: 1Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan. ORCID
  2. Keigo Hikida: 1Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
  3. Yinping Lu: 2Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China. ORCID
  4. Luyao Wang: 3School of Life Science, Shanghai University, Shanghai, China.
  5. Qi Dai: 1Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan. ORCID
  6. Morio Aki: 1Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan. ORCID
  7. Mami Shibata: 1Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
  8. Halwa Zakia: 1Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan. ORCID
  9. Jiajia Yang: 4Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Japan. ORCID
  10. Naoya Oishi: 1Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan. ORCID
  11. Shisei Tei: 1Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan. ORCID
  12. Toshiya Murai: 1Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan. ORCID
  13. Zhilin Zhang: 1Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
  14. Hironobu Fujiwara: 1Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan. ORCID

Abstract

Background and aims: Problematic mobile phone use can disrupt social interaction and well-being, potentially influencing cognitive processes. This study investigated whether mobile phone use problem severity is associated with alterations in the topological organization of brain networks.
Methods: Rs-fMRI and DTI data were collected from 81 healthy participants. Graph theory analyses were applied. The Mobile Phone Problem Use Scale-10 (MPPUS-10) was used to assess mobile phone use problem severity. Correlation analyses were conducted between each graph metric and questionnaire scores.
Results: MPPUS-10 scores correlated with global fMRI metrics: higher scores linked to longer shortest path length (reduced integration) and lower global efficiency (reduced information transfer). Conversely, higher MPPUS-10 scores were correlated with a greater clustering coefficient and higher local efficiency, which reflect increased local connectivity. Furthermore, higher MPPUS-10 scores were associated with a higher sigma value from DTI, indicating altered structural network properties. Some specific brain regions also showed significant correlations with MPPUS-10 scores.
Discussion and conclusion: These findings indicate that higher mobile phone use problem severity is associated with decreased integration and increased segregation of functional networks, alongside enhanced small-worldness in structural networks. Reduced integration aligns with addiction theories suggesting digital overload worsens network dysfunction, disrupting brain connectivity. Additionally, higher severity was correlated with altered connectivity in multiple regions, such as the precentral gyrus, supplementary motor area, and postcentral gyrus. These regions are associated with motor control, sensorimotor processing, and memory function. Further research is needed to explore whether these findings reflect shifts in the integration and integrity of brain information-processing modules.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2020 Feb 25;117(8):4385-4391 [PMID: 32041879]
  2. Nat Commun. 2012 Feb 28;3:702 [PMID: 22426223]
  3. Prog Neuropsychopharmacol Biol Psychiatry. 2021 Dec 20;111:110401 [PMID: 34265367]
  4. Int J Public Health. 2015 Feb;60(2):277-86 [PMID: 25645102]
  5. Neuroscientist. 2006 Dec;12(6):512-23 [PMID: 17079517]
  6. Front Neurosci. 2019 Mar 19;13:239 [PMID: 30941007]
  7. Nat Rev Neurosci. 2005 Sep;6(9):691-702 [PMID: 16136173]
  8. Eur J Neurosci. 2016 Sep;44(6):2300-13 [PMID: 27336203]
  9. BMC Psychol. 2024 Nov 21;12(1):683 [PMID: 39574179]
  10. Psychon Bull Rev. 2019 Apr;26(2):468-490 [PMID: 30719626]
  11. Nat Rev Neurosci. 2012 Apr 13;13(5):336-49 [PMID: 22498897]
  12. Netw Neurosci. 2020 Jul 01;4(3):507-527 [PMID: 32885113]
  13. J Neurosci. 2010 Jul 14;30(28):9477-87 [PMID: 20631176]
  14. J Neurosci. 2022 Nov 9;42(45):8416-8426 [PMID: 36351829]
  15. Nat Rev Neurosci. 2011 Jan;12(1):43-56 [PMID: 21170073]
  16. Brain. 2009 Jan;132(Pt 1):213-24 [PMID: 18952674]
  17. Neuroimage. 2008 May 1;40(4):1765-71 [PMID: 18329293]
  18. J Behav Addict. 2020 Oct 03;9(3):534-550 [PMID: 33011714]
  19. Neuron. 2020 Aug 19;107(4):745-758.e6 [PMID: 32516573]
  20. Cyberpsychol Behav. 2005 Feb;8(1):39-51 [PMID: 15738692]
  21. Mol Psychiatry. 2023 Apr;28(4):1636-1646 [PMID: 36460724]
  22. J Behav Addict. 2024 Jan 15;13(1):88-101 [PMID: 38224348]
  23. Front Psychol. 2025 Mar 05;16:1499039 [PMID: 40110077]
  24. Addict Behav. 2020 Mar;102:106150 [PMID: 31706139]
  25. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017 Jan;2(1):66-75 [PMID: 28944305]
  26. Neurosci Lett. 2020 Jan 10;715:134596 [PMID: 31711976]
  27. J Neurosci. 2009 Feb 11;29(6):1860-73 [PMID: 19211893]
  28. Neuroscientist. 2017 Oct;23(5):499-516 [PMID: 27655008]
  29. Front Neurol. 2020 Apr 16;11:253 [PMID: 32373045]
  30. Nat Rev Neurosci. 2009 Mar;10(3):186-98 [PMID: 19190637]
  31. PLoS One. 2013 Jul 04;8(7):e68910 [PMID: 23861951]
  32. PLoS Comput Biol. 2019 Feb 7;15(2):e1006807 [PMID: 30730907]
  33. Neuroimage Clin. 2012 Nov 16;2:79-94 [PMID: 24179761]
  34. Front Hum Neurosci. 2015 Jun 30;9:386 [PMID: 26175682]
  35. Neuroimage Clin. 2019;22:101777 [PMID: 30913531]
  36. Cereb Cortex. 2000 Mar;10(3):295-307 [PMID: 10731224]
  37. Neuron. 2002 Apr 25;34(3):341-7 [PMID: 11988166]
  38. Front Psychiatry. 2021 May 28;12:669042 [PMID: 34140904]
  39. Sci Rep. 2020 Aug 10;10(1):13489 [PMID: 32778667]
  40. Front Psychol. 2021 Sep 09;12:708970 [PMID: 34566786]
  41. Neuroimage. 2010 Sep;52(3):1059-69 [PMID: 19819337]
  42. Neurosci Biobehav Rev. 2017 Jun;77:286-300 [PMID: 28389343]
  43. Dialogues Clin Neurosci. 2018 Jun;20(2):111-121 [PMID: 30250388]
  44. Eur Arch Psychiatry Clin Neurosci. 2021 Oct;271(7):1379-1391 [PMID: 33386961]
  45. Epilepsia. 2023 May;64(5):1305-1317 [PMID: 36855286]
  46. PLoS One. 2010 Nov 01;5(11):e13788 [PMID: 21072180]
  47. Front Aging Neurosci. 2020 Oct 22;12:576627 [PMID: 33192468]
  48. Front Hum Neurosci. 2018 Dec 10;12:493 [PMID: 30618678]
  49. J Clin Med. 2021 Feb 26;10(5): [PMID: 33652883]
  50. PLoS Comput Biol. 2007 Feb 2;3(2):e17 [PMID: 17274684]
  51. Front Hum Neurosci. 2013 Feb 21;7:42 [PMID: 23439846]
  52. JAMA Psychiatry. 2018 Jun 1;75(6):613-622 [PMID: 29710118]
  53. Brain Sci. 2023 Nov 21;13(12): [PMID: 38137058]
  54. J Neural Eng. 2018 Apr;15(2):026023 [PMID: 29451125]
  55. Mol Psychiatry. 2021 Dec;26(12):7363-7371 [PMID: 34385597]
  56. Compr Psychiatry. 2022 Oct;118:152346 [PMID: 36029549]
  57. PLoS Comput Biol. 2008 Jun 27;4(6):e1000100 [PMID: 18584043]
  58. Trends Cogn Sci. 2014 Apr;18(4):177-85 [PMID: 24440116]
  59. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018 Sep;3(9):754-766 [PMID: 29703679]

MeSH Term

Humans
Male
Female
Adult
Magnetic Resonance Imaging
Young Adult
Diffusion Tensor Imaging
Brain
Cell Phone Use
Multimodal Imaging
Severity of Illness Index
Nerve Net
Behavior, Addictive

Word Cloud

Created with Highcharts 10.0.0mobilephoneusehigherscoresproblemseveritybrainMPPUS-10associatednetworksintegrationnetworkcorrelatedconnectivitystructuralregionswhetheralterationstopologicalDTItheoryanalysesgraphglobalreducedefficiencylocalreflectincreasedalteredpropertiesfindingsfunctionaladdictiondigitalgyrusmotoranalysisBackgroundaims:Problematiccandisruptsocialinteractionwell-beingpotentiallyinfluencingcognitiveprocessesstudyinvestigatedorganizationMethods:Rs-fMRIdatacollected81healthyparticipantsGraphappliedMobilePhoneProblemUseScale-10usedassessCorrelationconductedmetricquestionnaireResults:fMRImetrics:linkedlongershortestpathlengthlowerinformationtransferConverselygreaterclusteringcoefficientFurthermoresigmavalueindicatingspecificalsoshowedsignificantcorrelationsDiscussionconclusion:indicatedecreasedsegregationalongsideenhancedsmall-worldnessReducedalignstheoriessuggestingoverloadworsensdysfunctiondisruptingAdditionallymultipleprecentralsupplementaryareapostcentralcontrolsensorimotorprocessingmemoryfunctionresearchneededexploreshiftsintegrityinformation-processingmodulesBrainseverity:multimodalneuroimagingproblematicPMPU

Similar Articles

Cited By

No available data.