Machine-learning models for Alzheimer's disease diagnosis using neuroimaging data: survey, reproducibility, and generalizability evaluation.

Maryam Akhavan Aghdam, Serdar Bozdag, Fahad Saeed, Alzheimer���s Disease Neuroimaging Initiative
Author Information
  1. Maryam Akhavan Aghdam: Knight Foundation School of Computing and Information Science (KFSCIS), Florida International University (FIU), Miami, FL, USA.
  2. Serdar Bozdag: Department of Computer Science and Engineering, University of North Texas (UNT), Denton, TX, USA.
  3. Fahad Saeed: Knight Foundation School of Computing and Information Science (KFSCIS), Florida International University (FIU), Miami, FL, USA. fsaeed@fiu.edu.

Abstract

Clinical diagnosis of Alzheimer's disease (AD) is usually made after symptoms such as short-term memory loss are exhibited, which minimizes the intervention and treatment options. The existing screening techniques cannot distinguish between stable MCI (sMCI) cases (i.e., patients who do not convert to AD for at least three years) and progressive MCI (pMCI) cases (i.e., patients who convert to AD in three years or sooner). Delayed diagnosis of AD also disproportionately affects underrepresented and socioeconomically disadvantaged populations. The significant positive impact of an early diagnosis solution for AD across diverse ethno-racial and demographic groups is well-known and recognized. While advancements in high-throughput technologies have enabled the generation of vast amounts of multimodal clinical, and neuroimaging datasets related to AD, most methods utilizing these data sets for diagnostic purposes have not found their way in clinical settings. To better understand the landscape, we surveyed the major preprocessing, data management, traditional machine-learning (ML), and deep learning (DL) techniques used for diagnosing AD using neuroimaging data such as structural magnetic resonance imaging (sMRI), functional magnetic resonance imaging (fMRI), and positron emission tomography (PET). Once we had a good understanding of the methods available, we conducted a study to assess the reproducibility and generalizability of open-source ML models. Our evaluation shows that existing models show reduced generalizability when different cohorts of the data modality are used while controlling other computational factors. The paper concludes with a discussion of major challenges that plague ML models for AD diagnosis and biomarker discovery.

Keywords

References

  1. IEEE Access. 2019;7:155584-155600 [PMID: 32021737]
  2. Brain Sci. 2023 Feb 03;13(2): [PMID: 36831803]
  3. Quant Imaging Med Surg. 2018 Nov;8(10):992-1003 [PMID: 30598877]
  4. Nature. 2015 May 28;521(7553):436-44 [PMID: 26017442]
  5. J Chem Neuroanat. 2019 Jan;95:54-69 [PMID: 29474853]
  6. Front Neuroinform. 2018 Jun 19;12:35 [PMID: 29970996]
  7. Mach Learn Med Imaging. 2018 Sep;11046:337-345 [PMID: 32832936]
  8. Neuroinformatics. 2020 Jan;18(1):71-86 [PMID: 31093956]
  9. Neurosci Lett. 2018 Jan 18;664:7-14 [PMID: 29107088]
  10. Comput Methods Programs Biomed. 2020 Apr;187:105242 [PMID: 31837630]
  11. Neural Netw. 2015 Jan;61:85-117 [PMID: 25462637]
  12. Artif Intell Med. 2022 Aug;130:102332 [PMID: 35809971]
  13. Front Aging Neurosci. 2023 Apr 13;15:1102869 [PMID: 37122374]
  14. Med Image Anal. 2017 Apr;37:101-113 [PMID: 28167394]
  15. Int J Geriatr Psychiatry. 2007 Dec;22(12):1217-22 [PMID: 17562522]
  16. J Appl Lab Med. 2020 Jan 1;5(1):183-193 [PMID: 31848218]
  17. Hum Brain Mapp. 2017 May;38(5):2370-2383 [PMID: 28150897]
  18. Sci Rep. 2018 Apr 9;8(1):5697 [PMID: 29632364]
  19. Biol Cybern. 2022 Aug;116(4):389-406 [PMID: 35727351]
  20. Brain Inform. 2016 Mar;3(1):17-27 [PMID: 27747596]
  21. IEEE Trans Biomed Eng. 2015 Apr;62(4):1132-40 [PMID: 25423647]
  22. Med Image Anal. 2018 May;46:26-34 [PMID: 29502031]
  23. J Med Imaging (Bellingham). 2020 Sep;7(5):056001 [PMID: 37476352]
  24. Br J Radiol. 2019 Sep;92(1101):20180886 [PMID: 30994036]
  25. IEEE Trans Med Imaging. 2016 Dec;35(12):2524-2533 [PMID: 27333602]
  26. Neuroscience. 2021 Apr 15;460:43-52 [PMID: 33465405]
  27. Hum Brain Mapp. 2017 Oct;38(10):5019-5034 [PMID: 28665045]
  28. IEEE/ACM Trans Comput Biol Bioinform. 2019 Jan-Feb;16(1):244-257 [PMID: 29989989]
  29. Expert Rev Neurother. 2011 Nov;11(11):1579-91 [PMID: 22014137]
  30. IEEE Trans Neural Netw. 1998;9(1):224-9 [PMID: 18252445]
  31. IEEE Trans Biomed Eng. 2016 Jul;63(7):1473-82 [PMID: 26540666]
  32. Front Neuroinform. 2019 Nov 27;13:70 [PMID: 31827430]
  33. Sensors (Basel). 2022 Apr 19;22(9): [PMID: 35590793]
  34. Front Neurosci. 2017 Nov 21;11:615 [PMID: 29209156]
  35. Science. 2006 Jul 28;313(5786):504-7 [PMID: 16873662]
  36. Nat Biotechnol. 2006 Dec;24(12):1565-7 [PMID: 17160063]
  37. IEEE Trans Cybern. 2022 Jul;52(7):6822-6833 [PMID: 33306476]
  38. Trends Cogn Sci. 2007 Oct;11(10):428-34 [PMID: 17921042]
  39. Front Neurosci. 2020 Sep 30;14:558434 [PMID: 33100958]
  40. Med Image Anal. 2017 Dec;42:60-88 [PMID: 28778026]
  41. J Digit Imaging. 2018 Dec;31(6):895-903 [PMID: 29736781]
  42. Front Comput Neurosci. 2021 Apr 08;15:654315 [PMID: 33897398]
  43. Rev Neurosci. 2020 Aug 31;: [PMID: 32866134]
  44. Comput Med Imaging Graph. 2018 Dec;70:101-110 [PMID: 30340094]
  45. Int J Neural Syst. 2016 Nov;26(7):1650025 [PMID: 27478060]
  46. Front Neurosci. 2018 Nov 05;12:777 [PMID: 30455622]
  47. Brain Behav. 2019 Oct;9(10):e01407 [PMID: 31512413]
  48. J Med Syst. 2015 Nov;39(11):179 [PMID: 26420585]
  49. J Med Syst. 2019 Dec 18;44(2):37 [PMID: 31853655]
  50. Neuroimage. 2016 Apr 1;129:292-307 [PMID: 26774612]
  51. J Neurosci Methods. 2017 Apr 15;282:69-80 [PMID: 28286064]
  52. J Big Data. 2021;8(1):53 [PMID: 33816053]
  53. AMIA Annu Symp Proc. 2018 Dec 05;2018:1571-1580 [PMID: 30815203]

Grants

  1. P30 AG066444/NIA NIH HHS
  2. R01 AG043434/NIA NIH HHS
  3. U01 AG024904/NIA NIH HHS
  4. P01 AG026276/NIA NIH HHS
  5. R01 EB009352/NIBIB NIH HHS
  6. R35 GM153434/NIGMS NIH HHS
  7. UL1 TR000448/NCATS NIH HHS
  8. R35GM153434/NIH HHS
  9. UL1 TR002345/NCATS NIH HHS
  10. OAC-2312599/Division of Computing and Communication Foundations

Word Cloud

Created with Highcharts 10.0.0ADdiagnosisdatamodelsAlzheimer'sdiseaseneuroimagingMLlearninggeneralizabilityexistingtechniquesMCIcasesiepatientsconvertthreeyearsclinicalmethodsmajorusedusingmagneticresonanceimagingPETreproducibilityevaluationMRIClinicalusuallymadesymptomsshort-termmemorylossexhibitedminimizesinterventiontreatmentoptionsscreeningdistinguishstablesMCIleastprogressivepMCIsoonerDelayedalsodisproportionatelyaffectsunderrepresentedsocioeconomicallydisadvantagedpopulationssignificantpositiveimpactearlysolutionacrossdiverseethno-racialdemographicgroupswell-knownrecognizedadvancementshigh-throughputtechnologiesenabledgenerationvastamountsmultimodaldatasetsrelatedutilizingsetsdiagnosticpurposesfoundwaysettingsbetterunderstandlandscapesurveyedpreprocessingmanagementtraditionalmachine-learningdeepDLdiagnosingstructuralsMRIfunctionalfMRIpositronemissiontomographygoodunderstandingavailableconductedstudyassessopen-sourceshowsshowreduceddifferentcohortsmodalitycontrollingcomputationalfactorspaperconcludesdiscussionchallengesplaguebiomarkerdiscoveryMachine-learningdata:surveyDeepFunctionalGeneralizabilityMachineReproducibilityStructural

Similar Articles

Cited By