Brain-Derived Neurotrophic Factor (BDNF) in Huntington's Disease: Neurobiology and Therapeutic Potential.

Khairunnuur Fairuz Azman, Rahimah Zakaria
Author Information
  1. Khairunnuur Fairuz Azman: Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia.
  2. Rahimah Zakaria: Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia.

Abstract

Huntington's disease is a hereditary neurodegenerative disorder marked by severe neurodegeneration in the striatum and cortex. Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors. It plays a crucial role in maintaining the survival and proper function of striatal neurons. Depletion of BDNF has been linked to impairment and death of striatal neurons, leading to the manifestation of motor, cognitive, and behavioral dysfunctions characteristic of Huntington's disease. This review highlights the current update on the neurobiology of BDNF in the pathogenesis of Huntington's disease. The molecular evidence and the affected signaling pathways are also discussed. In addition, the impact of experimental manipulation of BDNF levels and its pharmaceutical potential for Huntington's disease treatment are explicitly reviewed.

Keywords

References

  1. Novak MJU; Tabrizi SJ; Huntington’s disease. BMJ 2010,340(jun30 4),c3109 [DOI: 10.1136/bmj.c3109]
  2. Chen K.P.; Hua K.F.; Tsai F.T.; A selective inhibitor of the NLRP3 inflammasome as a potential therapeutic approach for neuroprotection in a transgenic mouse model of Huntington’s disease. J Neuroinflammation 2022,19(1),56 [DOI: 10.1186/s12974-022-02419-9]
  3. Baig S.S.; Strong M.; Quarrell O.W.J.; The global prevalence of Huntington’s disease: A systematic review and discussion. Neurodegener Dis Manag 2016,6(4),331-343 [DOI: 10.2217/nmt-2016-0008]
  4. Rawlins M.D.; Wexler N.S.; Wexler A.R.; The prevalence of Huntington’s disease. Neuroepidemiology 2016,46(2),144-153 [DOI: 10.1159/000443738]
  5. Quarrell O; O’Donovan KL; Bandmann O; Strong M; The prevalence of juvenile Huntington’s disease: A review of the literature and meta-analysis. PLoS Curr 2012,4,e4f8606b742ef3 [DOI: 10.1371/4f8606b742ef3]
  6. Ferreira J.J.; Rodrigues F.B.; Duarte G.S.; An MDS evidence‐based review on treatments for Huntington’s disease. Mov Disord 2022,37(1),25-35 [DOI: 10.1002/mds.28855]
  7. Huang E.J.; Reichardt L.F.; Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 2001,24(1),677-736 [DOI: 10.1146/annurev.neuro.24.1.677]
  8. Noble E.E.; Billington C.J.; Kotz C.M.; Wang C.; The lighter side of BDNF. Am J Physiol Regul Integr Comp Physiol 2011,300(5),R1053-R1069 [DOI: 10.1152/ajpregu.00776.2010]
  9. Bemelmans A.P.; Horellou P.; Pradier L.; Brunet I.; Colin P.; Mallet J.; Brain-derived neurotrophic factor-mediated protection of striatal neurons in an excitotoxic rat model of Huntington’s disease, as demonstrated by adenoviral gene transfer. Hum Gene Ther 1999,10(18),2987-2997 [DOI: 10.1089/10430349950016393]
  10. Pérez-Navarro E.; Alberch J.; Neveu I.; Arenas E.; Brain-derived neurotrophic factor, neurotrophin-3 and neurotrophin-4/5 differentially regulate the phenotype and prevent degenerative changes in striatal projection neurons after excitotoxicity in vivo. Neuroscience 1999,91(4),1257-1264 [DOI: 10.1016/S0306-4522(98)00723-4]
  11. Baydyuk M.; Xu B.; BDNF signaling and survival of striatal neurons. Front Cell Neurosci 2014,8,254 [DOI: 10.3389/fncel.2014.00254]
  12. Zuccato C.; Ciammola A.; Rigamonti D.; Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 2001,293(5529),493-498 [DOI: 10.1126/science.1059581]
  13. Saylor A.J.; McGinty J.F.; An intrastriatal brain-derived neurotrophic factor infusion restores striatal gene expression in Bdnf heterozygous mice. Brain Struct Funct 2010,215(2),97-104 [DOI: 10.1007/s00429-010-0282-9]
  14. Giampà C.; Montagna E.; Dato C.; Melone M.A.B.; Bernardi G.; Fusco F.R.; Systemic delivery of recombinant brain derived neurotrophic factor (BDNF) in the R6/2 mouse model of Huntington’s disease. PLoS One 2013,8(5),e64037 [DOI: 10.1371/journal.pone.0064037]
  15. van Duijn E.; Kingma E.M.; van der Mast R.C.; Psychopathology in verified Huntington’s disease gene carriers. J Neuropsychiatry Clin Neurosci 2007,19(4),441-448 [DOI: 10.1176/jnp.2007.19.4.441]
  16. Bates G.P.; Dorsey R.; Gusella J.F.; Huntington disease. Nat Rev Dis Primers 2015,1(1),15005 [DOI: 10.1038/nrdp.2015.5]
  17. Roos R.A.C.; Huntington’s disease: A clinical review. Orphanet J Rare Dis 2010,5(1),40 [DOI: 10.1186/1750-1172-5-40]
  18. Nana A.L.; Kim E.H.; Thu D.C.V.; Widespread heterogeneous neuronal loss across the cerebral cortex in Huntington’s disease. J Huntingtons Dis 2014,3(1),45-64 [DOI: 10.3233/JHD-140092]
  19. Hassanzadeh K.; Feligioni M.; Zarei M.; Bioactive peptides in neurodegenerative diseases. In: Bioact pept from food sources, anal funct 2022,391-414 [DOI: 10.1201/9781003106524-25]
  20. de la Monte S.M.; Vonsattel J.P.; Richardson E.P.; Morphometric demonstration of atrophic changes in the cerebral cortex, white matter, and neostriatum in Huntington’s disease. J Neuropathol Exp Neurol 1988,47(5),516-525 [DOI: 10.1097/00005072-198809000-00003]
  21. Kassubek J.; Bernhard Landwehrmeyer G.; Ecker D.; Global cerebral atrophy in early stages of Huntingtonʼs disease: quantitative MRI study. Neuroreport 2004,15(2),363-365 [DOI: 10.1097/00001756-200402090-00030]
  22. Fennema-Notestine C.; Archibald S.L.; Jacobson M.W.; in vivo evidence of cerebellar atrophy and cerebral white matter loss in Huntington disease. Neurology 2004,63(6),989-995 [DOI: 10.1212/01.WNL.0000138434.68093.67]
  23. Barr A.N.; Heinze W.J.; Dobben G.D.; Valvassori G.E.; Sugar O.; Bicaudate index in computerized tomography of Huntington disease and cerebral atrophy. Neurology 1978,28(11),1196-1200 [DOI: 10.1212/WNL.28.11.1196]
  24. Barry J.; Bui M.T.N.; Levine M.S.; Cepeda C.; Synaptic pathology in Huntington’s disease: Beyond the corticostriatal pathway. Neurobiol Dis 2022,162,105574 [DOI: 10.1016/j.nbd.2021.105574]
  25. Vonsattel J.P.G.; Keller C.; Pilar Amaya M.; Neuropathology of Huntington’s disease. Handb Clin Neurol 2008,89,599-618 [DOI: 10.1016/S0072-9752(07)01256-0]
  26. Vonsattel J.P.; Myers R.H.; Stevens T.J.; Ferrante R.J.; Bird E.D.; Richardson E.P.; Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 1985,44(6),559-577 [DOI: 10.1097/00005072-198511000-00003]
  27. Waldvogel H.J.; Faull R.L.M.; The diversity of GABA(A) receptor subunit distribution in the normal and Huntington’s disease human brain. Adv Pharmacol 2015,73,223-264 [DOI: 10.1016/bs.apha.2014.11.010]
  28. Kowall N.W.; Ferrante R.J.; Martin J.B.; Patterns of cell loss in Huntington’s disease. Trends Neurosci 1987,10(1),24-29 [DOI: 10.1016/0166-2236(87)90120-2]
  29. Reiner A.; Shelby E.; Wang H.; Striatal parvalbuminergic neurons are lost in Huntington’s disease: implications for dystonia. Mov Disord 2013,28(12),1691-1699 [DOI: 10.1002/mds.25624]
  30. Seto-Ohshima A.; Lawson E.; Emson P.C.; Mountjoy C.Q.; Carrasco L.H.; Loss of matrix calcium-binding protein-containing neurons in Huntington’s disease. Lancet 1988,331(8597),1252-1255 [DOI: 10.1016/S0140-6736(88)92073-9]
  31. Kiyama H.; Seto-Ohshima A.; Emson P.C.; Calbindin D28K as a marker for the degeneration of the striatonigral pathway in Huntington’s disease. Brain Res 1990,525(2),209-214 [DOI: 10.1016/0006-8993(90)90866-A]
  32. Kim E.H.; Thu D.C.V.; Tippett L.J.; Cortical interneuron loss and symptom heterogeneity in Huntington disease. Ann Neurol 2014,75(5),717-727 [DOI: 10.1002/ana.24162]
  33. Crevier-Sorbo G.; Rymar V.V.; Crevier-Sorbo R.; Sadikot A.F.; Thalamostriatal degeneration contributes to dystonia and cholinergic interneuron dysfunction in a mouse model of Huntington’s disease. Acta Neuropathol Commun 2020,8(1),14 [DOI: 10.1186/s40478-020-0878-0]
  34. Picconi B.; Passino E.; Sgobio C.; Plastic and behavioral abnormalities in experimental Huntington’s disease: A crucial role for cholinergic interneurons. Neurobiol Dis 2006,22(1),143-152 [DOI: 10.1016/j.nbd.2005.10.009]
  35. Joshi P.R.; Wu N.P.; André V.M.; Age-dependent alterations of corticostriatal activity in the YAC128 mouse model of Huntington disease. J Neurosci 2009,29(8),2414-2427 [DOI: 10.1523/JNEUROSCI.5687-08.2009]
  36. Morton A.J.; Faull R.L.M.; Edwardson J.M.; Abnormalities in the synaptic vesicle fusion machinery in Huntington’s disease. Brain Res Bull 2001,56(2),111-117 [DOI: 10.1016/S0361-9230(01)00611-6]
  37. Cepeda C.; Ariano M.A.; Calvert C.R.; NMDA receptor function in mouse models of Huntington disease. J Neurosci Res 2001,66(4),525-539 [DOI: 10.1002/jnr.1244]
  38. Delva A.; Michiels L.; Koole M.; Van Laere K.; Vandenberghe W.; Synaptic damage and its clinical correlates in people with early Huntington disease: A PET study. Neurology 2022,98(1),e83-e94 [DOI: 10.1212/WNL.0000000000012969]
  39. André V.M.; Cepeda C.; Fisher Y.E.; Differential electrophysiological changes in striatal output neurons in Huntington’s disease. J Neurosci 2011,31(4),1170-1182 [DOI: 10.1523/JNEUROSCI.3539-10.2011]
  40. Petersen M.H.; Willert C.W.; Andersen J.V.; Progressive mitochondrial dysfunction of striatal synapses in R6/2 mouse model of Huntington’s disease. J Huntingtons Dis 2022,11(2),121-140 [DOI: 10.3233/JHD-210518]
  41. Cepeda C.; Levine M.S.; Synaptic dysfunction in Huntington’s disease: lessons from genetic animal models. Neurosci 2020,5,1073858420972662 [PMID: 33198566]
  42. Foltran R.B.; Diaz S.L.; BDNF isoforms: A round trip ticket between neurogenesis and serotonin? J Neurochem 2016,138(2),204-221 [DOI: 10.1111/jnc.13658]
  43. Mowla S.J.; Farhadi H.F.; Pareek S.; Biosynthesis and post-translational processing of the precursor to brain-derived neurotrophic factor. J Biol Chem 2001,276(16),12660-12666 [DOI: 10.1074/jbc.M008104200]
  44. Je H.S.; Yang F.; Ji Y.; Nagappan G.; Hempstead B.L.; Lu B.; Role of pro-brain-derived neurotrophic factor (proBDNF) to mature BDNF conversion in activity-dependent competition at developing neuromuscular synapses. Proc Natl Acad Sci 2012,109(39),15924-15929 [DOI: 10.1073/pnas.1207767109]
  45. Vafadari B.; Salamian A.; Kaczmarek L.; MMP ‐9 in translation: from molecule to brain physiology, pathology, and therapy. J Neurochem 2016,139(Suppl. 2),91-114 [DOI: 10.1111/jnc.13415]
  46. Dieni S.; Matsumoto T.; Dekkers M.; BDNF and its pro-peptide are stored in presynaptic dense core vesicles in brain neurons. J Cell Biol 2012,196(6),775-788 [DOI: 10.1083/jcb.201201038]
  47. Yang J.L.; Lin Y.T.; Chuang P.C.; Bohr V.A.; Mattson M.P.; BDNF and exercise enhance neuronal DNA repair by stimulating CREB-mediated production of apurinic/apyrimidinic endonuclease 1. Neuromolecular Med 2014,16(1),161-174 [DOI: 10.1007/s12017-013-8270-x]
  48. Deinhardt K; Chao MV; Shaping neurons: Long and short range effects of mature and proBDNF signalling upon neuronal structure. Neuropharmacology 2014,76 Pt C(0 0),603-9 [DOI: 10.1016/j.neuropharm.2013.04.054]
  49. Nykjaer A.; Willnow T.E.; Sortilin: A receptor to regulate neuronal viability and function. Trends Neurosci 2012,35(4),261-270 [DOI: 10.1016/j.tins.2012.01.003]
  50. Simmons D.A.; Modulating neurotrophin receptor signaling as a therapeutic strategy for Huntington’s disease. J Huntingtons Dis 2017,6(4),303-325 [DOI: 10.3233/JHD-170275]
  51. Song W.; Volosin M.; Cragnolini A.B.; Hempstead B.L.; Friedman W.J.; ProNGF induces PTEN via p75NTR to suppress Trk-mediated survival signaling in brain neurons. J Neurosci 2010,30(46),15608-15615 [DOI: 10.1523/JNEUROSCI.2581-10.2010]
  52. Sandhya V.K.; Raju R.; Verma R.; A network map of BDNF/TRKB and BDNF/p75NTR signaling system. J Cell Commun Signal 2013,7(4),301-307 [DOI: 10.1007/s12079-013-0200-z]
  53. Colucci-D’Amato L.; Speranza L.; Volpicelli F.; Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer. Int J Mol Sci 2020,21(20),7777 [DOI: 10.3390/ijms21207777]
  54. Panja D.; Kenney J.W.; D’Andrea L.; Two-stage translational control of dentate gyrus LTP consolidation is mediated by sustained BDNF-TrkB signaling to MNK. Cell Rep 2014,9(4),1430-1445 [DOI: 10.1016/j.celrep.2014.10.016]
  55. Zhao H.; Alam A.; San C.Y.; Molecular mechanisms of brain-derived neurotrophic factor in neuro-protection: Recent developments. Brain Res 2017,1665,1-21 [DOI: 10.1016/j.brainres.2017.03.029]
  56. Minichiello L.; TrkB signalling pathways in LTP and learning. Nat Rev Neurosci 2009,10(12),850-860 [DOI: 10.1038/nrn2738]
  57. Gonzalez A.; Moya-Alvarado G.; Gonzalez-Billaut C.; Bronfman F.C.; Cellular and molecular mechanisms regulating neuronal growth by brain‐derived neurotrophic factor. Cytoskeleton 2016,73(10),612-628 [DOI: 10.1002/cm.21312]
  58. Jaworski J.; Spangler S.; Seeburg D.P.; Hoogenraad C.C.; Sheng M.; Control of dendritic arborization by the phosphoinositide-3′-kinase-Akt-mammalian target of rapamycin pathway. J Neurosci 2005,25(49),11300-11312 [DOI: 10.1523/JNEUROSCI.2270-05.2005]
  59. Lin G.; Bella A.J.; Lue T.F.; Lin C.S.; Brain-derived neurotrophic factor (BDNF) acts primarily via the JAK/STAT pathway to promote neurite growth in the major pelvic ganglion of the rat: part 2. J Sex Med 2006,3(5),821-829 [DOI: 10.1111/j.1743-6109.2006.00292.x]
  60. Schulte J.; Littleton J.T.; The biological function of the Huntingtin protein and its relevance to Huntington’s Disease pathology. Curr Trends Neurol 2011,5,65-78 [PMID: 22180703]
  61. Park H.; Cortical axonal secretion of BDNF in the striatum is disrupted in the mutant-huntingtin knock-in mouse model of huntington’s disease. Exp Neurobiol 2018,27(3),217-225 [DOI: 10.5607/en.2018.27.3.217]
  62. Altar C.A.; Cai N.; Bliven T.; Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature 1997,389(6653),856-860 [DOI: 10.1038/39885]
  63. Gauthier L.R.; Charrin B.C.; Borrell-Pagès M.; Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 2004,118(1),127-138 [DOI: 10.1016/j.cell.2004.06.018]
  64. Liot G.; Zala D.; Pla P.; Mottet G.; Piel M.; Saudou F.; Mutant Huntingtin alters retrograde transport of TrkB receptors in striatal dendrites. J Neurosci 2013,33(15),6298-6309 [DOI: 10.1523/JNEUROSCI.2033-12.2013]
  65. Canals J.M.; Pineda J.R.; Torres-Peraza J.F.; Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington’s disease. J Neurosci 2004,24(35),7727-7739 [DOI: 10.1523/JNEUROSCI.1197-04.2004]
  66. Zuccato C.; Liber D.; Ramos C.; Progressive loss of BDNF in a mouse model of Huntington’s disease and rescue by BDNF delivery. Pharmacol Res 2005,52(2),133-139 [DOI: 10.1016/j.phrs.2005.01.001]
  67. Pineda J.R.; Canals J.M.; Bosch M.; Brain‐derived neurotrophic factor modulates dopaminergic deficits in a transgenic mouse model of Huntington’s disease. J Neurochem 2005,93(5),1057-1068 [DOI: 10.1111/j.1471-4159.2005.03047.x]
  68. Griffioen K.J.; Wan R.; Brown T.R.; Aberrant heart rate and brainstem brain-derived neurotrophic factor (BDNF) signaling in a mouse model of Huntington’s disease. Neurobiol Aging 2012,33(7),1481.e1-1481.e5 [DOI: 10.1016/j.neurobiolaging.2011.11.030]
  69. Yu C.; Li C.H.; Chen S.; Yoo H.; Qin X.; Park H.; Decreased BDNF release in cortical neurons of a knock-in mouse model of Huntington’s disease. Sci Rep 2018,8(1),16976 [DOI: 10.1038/s41598-018-34883-w]
  70. Conforti P.; Ramos C.; Apostol B.L.; Blood level of brain-derived neurotrophic factor mRNA is progressively reduced in rodent models of Huntington’s disease: Restoration by the neuroprotective compound CEP-1347. Mol Cell Neurosci 2008,39(1),1-7 [DOI: 10.1016/j.mcn.2008.04.012]
  71. Samadi P.; Boutet A.; Rymar V.V.; Relationship between BDNF expression in major striatal afferents, striatum morphology and motor behavior in the R6/2 mouse model of Huntington’s disease. Genes Brain Behav 2013,12(1),108-124 [DOI: 10.1111/j.1601-183X.2012.00858.x]
  72. Diógenes M.J.; Fernandes C.C.; Sebastião A.M.; Ribeiro J.A.; Activation of adenosine A2A receptor facilitates brain-derived neurotrophic factor modulation of synaptic transmission in hippocampal slices. J Neurosci 2004,24(12),2905-2913 [DOI: 10.1523/JNEUROSCI.4454-03.2004]
  73. Potenza R.L.; Tebano M.T.; Martire A.; Adenosine A2A receptors modulate BDNF both in normal conditions and in experimental models of Huntington’s disease. Purinergic Signal 2007,3(4),333-338 [DOI: 10.1007/s11302-007-9066-y]
  74. Seo H.; Sonntag K.C.; Kim W.; Cattaneo E.; Isacson O.; Proteasome activator enhances survival of Huntington’s disease neuronal model cells. PLoS One 2007,2(2),e238 [DOI: 10.1371/journal.pone.0000238]
  75. Seo H.; Sonntag K.C.; Isacson O.; Generalized brain and skin proteasome inhibition in Huntington’s disease. Ann Neurol 2004,56(3),319-328 [DOI: 10.1002/ana.20207]
  76. Seo H.; Kim W.; Isacson O.; Compensatory changes in the ubiquitin-proteasome system, brain-derived neurotrophic factor and mitochondrial complex II/III in YAC72 and R6/2 transgenic mice partially model Huntington’s disease patients. Hum Mol Genet 2008,17(20),3144-3153 [DOI: 10.1093/hmg/ddn211]
  77. Nguyen K.Q.; Rymar V.V.; Sadikot A.F.; Impaired TrkB signaling underlies reduced BDNF-mediated trophic support of striatal neurons in the R6/2 mouse model of huntington’s disease. Front Cell Neurosci 2016,10,37 [DOI: 10.3389/fncel.2016.00037]
  78. Ma Q.; Yang J.; Li T.; Milner T.A.; Hempstead B.L.; Selective reduction of striatal mature BDNF without induction of proBDNF in the zQ175 mouse model of Huntington’s disease. Neurobiol Dis 2015,82,466-477 [DOI: 10.1016/j.nbd.2015.08.008]
  79. Plotkin J.L.; Day M.; Peterson J.D.; Impaired TrkB receptor signaling underlies corticostriatal dysfunction in Huntington’s disease. Neuron 2014,83(1),178-188 [DOI: 10.1016/j.neuron.2014.05.032]
  80. Brito V.; Puigdellívol M.; Giralt A.; del Toro D.; Alberch J.; Ginés S.; Imbalance of p75NTR/TrkB protein expression in Huntington’s disease: implication for neuroprotective therapies. Cell Death Dis 2013,4(4),e595-5 [DOI: 10.1038/cddis.2013.116]
  81. Alberch J.; López M.; Badenas C.; Association between BDNF Val66Met polymorphism and age at onset in Huntington disease. Neurology 2005,65(6),964-965 [DOI: 10.1212/01.wnl.0000175977.57661.b1]
  82. Di Maria E.; Marasco A.; Tartari M.; No evidence of association between BDNF gene variants and age-at-onset of Huntington’s disease. Neurobiol Dis 2006,24(2),274-279 [DOI: 10.1016/j.nbd.2006.07.002]
  83. Kishikawa S.; Li J.L.; Gillis T.; Brain-derived neurotrophic factor does not influence age at neurologic onset of Huntington’s disease. Neurobiol Dis 2006,24(2),280-285 [DOI: 10.1016/j.nbd.2006.07.008]
  84. Mai M.; Akkad A.D.; Wieczorek S.; No association between polymorphisms in the BDNF gene and age at onset in Huntington disease. BMC Med Genet 2006,7(1),79 [DOI: 10.1186/1471-2350-7-79]
  85. Gutierrez A.; Corey-Bloom J.; Thomas E.A.; Desplats P.; Evaluation of biochemical and epigenetic measures of peripheral brain-derived neurotrophic factor (BDNF) as a biomarker in Huntington’s disease patients. Front Mol Neurosci 2020,12,335 [DOI: 10.3389/fnmol.2019.00335]
  86. Zuccato C.; Marullo M.; Conforti P.; MacDonald M.E.; Tartari M.; Cattaneo E.; Systematic assessment of BDNF and its receptor levels in human cortices affected by Huntington’s disease. Brain Pathol 2008,18(2),225-238 [DOI: 10.1111/j.1750-3639.2007.00111.x]
  87. Müller S.; In silico analysis of regulatory networks underlines the role of miR-10b-5p and its target BDNF in huntington’s disease. Transl Neurodegener 2014,3(1),17 [DOI: 10.1186/2047-9158-3-17]
  88. Ferrer I.; Goutan E.; Marín C.; Rey M.J.; Ribalta T.; Brain-derived neurotrophic factor in Huntington disease. Brain Res 2000,866(1-2),257-261 [DOI: 10.1016/S0006-8993(00)02237-X]
  89. Ciammola A.; Sassone J.; Cannella M.; Low brain‐derived neurotrophic factor (BDNF) levels in serum of Huntington’s disease patients. Am J Med Genet B Neuropsychiatr Genet 2007,144B(4),574-577 [DOI: 10.1002/ajmg.b.30501]
  90. Plinta K.; Plewka A.; Pawlicki K.; The utility of bdnf detection in assessing severity of huntington’s disease. J Clin Med 2021,10(21),5181 [DOI: 10.3390/jcm10215181]
  91. Zuccato C.; Marullo M.; Vitali B.; Brain-derived neurotrophic factor in patients with Huntington’s disease. PLoS One 2011,6(8),e22966 [DOI: 10.1371/journal.pone.0022966]
  92. Ou Z.Y.A.; Byrne L.M.; Rodrigues F.B.; Brain-derived neurotrophic factor in cerebrospinal fluid and plasma is not a biomarker for Huntington’s disease. Sci Rep 2021,11(1),3481 [DOI: 10.1038/s41598-021-83000-x]
  93. Betti L.; Palego L.; Unti E.; Brain-derived neurotrophic factor (BDNF) and serotonin transporter (SERT) in platelets of patients with mild Huntington’s disease: relationships with social cognition symptoms. Arch Ital Biol 2018,156(1),27-39 [DOI: 10.12871/00039829201813]
  94. Ma B.; Culver B.P.; Baj G.; Tongiorgi E.; Chao M.V.; Tanese N.; Localization of BDNF mRNA with the Huntington’s disease protein in rat brain. Mol Neurodegener 2010,5(1),22 [DOI: 10.1186/1750-1326-5-22]
  95. Silva A.; Naia L.; Dominguez A.; Overexpression of BDNF and full-length Trkb receptor ameliorate striatal neural survival in Huntington’s disease. Neurodegener Dis 2015,15(4),207-218 [DOI: 10.1159/000375447]
  96. del Toro D.; Canals J.M.; Ginés S.; Kojima M.; Egea G.; Alberch J.; Mutant huntingtin impairs the post-Golgi trafficking of brain-derived neurotrophic factor but not its Val66Met polymorphism. J Neurosci 2006,26(49),12748-12757 [DOI: 10.1523/JNEUROSCI.3873-06.2006]
  97. Her L.S.; Goldstein L.S.B.; Enhanced sensitivity of striatal neurons to axonal transport defects induced by mutant huntingtin. J Neurosci 2008,28(50),13662-13672 [DOI: 10.1523/JNEUROSCI.4144-08.2008]
  98. Numakawa T.; Suzuki S.; Kumamaru E.; Adachi N.; Richards M.; Kunugi H.; BDNF function and intracellular signaling in neurons. Histol Histopathol 2010,25(2),237-258 [PMID: 20017110]
  99. Maloney M.T.; Wang W.; Bhowmick S.; Failure to thrive: Impaired BDNF transport along the cortical-striatal axis in mouse Q140 neurons of Huntington’s disease. Biology (Basel) 2023,12(2),157 [DOI: 10.3390/biology12020157]
  100. Zhou Z.; Zhong S.; Zhang R.; Functional analysis of brain derived neurotrophic factor (BDNF) in Huntington’s disease. Aging 2021,13(4),6103-6114 [DOI: 10.18632/aging.202603]
  101. da Fonsêca V.S.; da Silva Colla A.R.; de Paula Nascimento-Castro C.; Brain-derived neurotrophic factor prevents depressive-like behaviors in early-symptomatic YAC128 Huntington’s disease mice. Mol Neurobiol 2018,55(9),7201-7215 [DOI: 10.1007/s12035-018-0890-6]
  102. Connor B.; Sun Y.; von Hieber D.; Tang S.K.; Jones K.S.; Maucksch C.; AAV1/2-mediated BDNF gene therapy in a transgenic rat model of Huntington’s disease. Gene Ther 2016,23(3),283-295 [DOI: 10.1038/gt.2015.113]
  103. Arregui L.; Benítez J.A.; Razgado L.F.; Vergara P.; Segovia J.; Adenoviral astrocyte-specific expression of BDNF in the striata of mice transgenic for Huntington’s disease delays the onset of the motor phenotype. Cell Mol Neurobiol 2011,31(8),1229-1243 [DOI: 10.1007/s10571-011-9725-y]
  104. Kells A.P.; Fong D.M.; Dragunow M.; During M.J.; Young D.; Connor B.; AAV-Mediated gene delivery of BDNF or GDNF is neuroprotective in a model of huntington disease. Mol Ther 2004,9(5),682-688 [DOI: 10.1016/j.ymthe.2004.02.016]
  105. Giralt A.; Friedman H.C.; Caneda-Ferrón B.; BDNF regulation under GFAP promoter provides engineered astrocytes as a new approach for long-term protection in Huntington’s disease. Gene Ther 2010,17(10),1294-1308 [DOI: 10.1038/gt.2010.71]
  106. Liang X.S.; Sun Z.W.; Thomas A.M.; Li S.; Mesenchymal stem cell therapy for Huntington disease: A meta-analysis. Stem Cells Int 2023,2023,1109967 [DOI: 10.1155/2023/1109967]
  107. Dey N.D.; Bombard M.C.; Roland B.P.; Genetically engineered mesenchymal stem cells reduce behavioral deficits in the YAC 128 mouse model of Huntington’s disease. Behav Brain Res 2010,214(2),193-200 [DOI: 10.1016/j.bbr.2010.05.023]
  108. Pollock K.; Dahlenburg H.; Nelson H.; Human mesenchymal stem cells genetically engineered to overexpress brain-derived neurotrophic factor improve outcomes in Huntington’s disease mouse models. Mol Ther 2016,24(5),965-977 [DOI: 10.1038/mt.2016.12]
  109. Olson S.D.; Pollock K.; Kambal A.; Genetically engineered mesenchymal stem cells as a proposed therapeutic for Huntington’s disease. Mol Neurobiol 2012,45(1),87-98 [DOI: 10.1007/s12035-011-8219-8]
  110. Pérez-Navarro E.; Canudas A.M.; Åkerud P.; Alberch J.; Arenas E.; Brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5 prevent the death of striatal projection neurons in a rodent model of Huntington’s disease. J Neurochem 2000,75(5),2190-2199 [DOI: 10.1046/j.1471-4159.2000.0752190.x]
  111. Zimmermann T.; Remmers F.; Lutz B.; Leschik J.; ESC-derived BDNF-overexpressing neural progenitors differentially promote recovery in Huntington’s disease models by enhanced striatal differentiation. Stem Cell Reports 2016,7(4),693-706 [DOI: 10.1016/j.stemcr.2016.08.018]
  112. Kim H.S.; Jeon I.; Noh J.E.; Intracerebral transplantation of BDNF-overexpressing human neural stem cells (HB1.F3.BDNF) promotes migration, differentiation and functional recovery in a rodent model of Huntington’s disease. Exp Neurobiol 2020,29(2),130-137 [DOI: 10.5607/en20011]
  113. Gharami K.; Xie Y.; An J.J.; Tonegawa S.; Xu B.; Brain‐derived neurotrophic factor over‐expression in the forebrain ameliorates Huntington’s disease phenotypes in mice. J Neurochem 2008,105(2),369-379 [DOI: 10.1111/j.1471-4159.2007.05137.x]
  114. Xie Y.; Hayden M.R.; Xu B.; BDNF overexpression in the forebrain rescues Huntington’s disease phenotypes in YAC128 mice. J Neurosci 2010,30(44),14708-14718 [DOI: 10.1523/JNEUROSCI.1637-10.2010]
  115. Smail S.; Bahga D.; McDole B.; Guthrie K.; Increased olfactory bulb BDNF expression does not rescue deficits in olfactory neurogenesis in the Huntington’s disease R6/2 mouse. Chem Senses 2016,41(3),221-232 [DOI: 10.1093/chemse/bjv076]
  116. Giralt A.; Carretón O.; Lao-Peregrin C.; Martín E.D.; Alberch J.; Conditional BDNF release under pathological conditions improves Huntington’s disease pathology by delaying neuronal dysfunction. Mol Neurodegener 2011,6(1),71 [DOI: 10.1186/1750-1326-6-71]
  117. Lynch G.; Kramar E.A.; Rex C.S.; Brain-derived neurotrophic factor restores synaptic plasticity in a knock-in mouse model of Huntington’s disease. J Neurosci 2007,27(16),4424-4434 [DOI: 10.1523/JNEUROSCI.5113-06.2007]
  118. Martire A.; Pepponi R.; Domenici M.R.; Ferrante A.; Chiodi V.; Popoli P.; BDNF prevents NMDA ‐induced toxicity in models of Huntington’s disease: the effects are genotype specific and adenosine A 2A receptor is involved. J Neurochem 2013,125(2),225-235 [DOI: 10.1111/jnc.12177]
  119. Torres-Cruz F.M.; Mendoza E.; Vivar-Cortés I.C.; García-Sierra F.; Hernández-Echeagaray E.; Do BDNF and NT‐4/5 exert synergistic or occlusive effects on corticostriatal transmission in a male mouse model of Huntington’s disease? J Neurosci Res 2019,97(12),1665-1677 [DOI: 10.1002/jnr.24507]
  120. Van Raamsdonk J.M.; Pearson J.; Bailey C.D.C.; Cystamine treatment is neuroprotective in the YAC128 mouse model of Huntington disease. J Neurochem 2005,95(1),210-220 [DOI: 10.1111/j.1471-4159.2005.03357.x]
  121. Borrell-Pagès M.; Canals J.M.; Cordelières F.P.; Cystamine and cysteamine increase brain levels of BDNF in Huntington disease via HSJ1b and transglutaminase. J Clin Invest 2006,116(5),1410-1424 [DOI: 10.1172/JCI27607]
  122. Peng Q.; Masuda N.; Jiang M.; The antidepressant sertraline improves the phenotype, promotes neurogenesis and increases BDNF levels in the R6/2 Huntington’s disease mouse model. Exp Neurol 2008,210(1),154-163 [DOI: 10.1016/j.expneurol.2007.10.015]
  123. Simmons D.A.; Rex C.S.; Palmer L.; Up-regulating BDNF with an ampakine rescues synaptic plasticity and memory in Huntington’s disease knockin mice. Proc Natl Acad Sci 2009,106(12),4906-4911 [DOI: 10.1073/pnas.0811228106]
  124. Reiner A.; Wang H.B.; Del Mar N.; Sakata K.; Yoo W.; Deng Y.P.; BDNF may play a differential role in the protective effect of the mGluR2/3 agonist LY379268 on striatal projection neurons in R6/2 Huntington’s disease mice. Brain Res 2012,1473,161-172 [DOI: 10.1016/j.brainres.2012.07.026]
  125. Wang H.; Del Mar N.; Deng Y.; Reiner A.; Rescue of BDNF expression by the thalamic parafascicular nucleus with chronic treatment with the mGluR2/3 agonist LY379268 may contribute to the LY379268 rescue of enkephalinergic striatal projection neurons in R6/2 Huntington’s disease mice. Neurosci Lett 2021,763,136180 [DOI: 10.1016/j.neulet.2021.136180]
  126. Ibrahim H.I.; Rabie M.A.; Mohamed R.A.; Nassar N.N.; Adenosine A1 receptor agonist, N6-cyclohexyladenosine, attenuates Huntington’s disease via stimulation of TrKB/PI3K/Akt/CREB/BDNF pathway in 3-nitropropionic acid rat model. Chem Biol Interact 2023,369,110288 [DOI: 10.1016/j.cbi.2022.110288]
  127. Zhao X.; Chen X.Q.; Han E.; TRiC subunits enhance BDNF axonal transport and rescue striatal atrophy in Huntington’s disease. Proc Natl Acad Sci 2016,113(38),E5655-E5664 [DOI: 10.1073/pnas.1603020113]
  128. El-Shamarka M.E.S.; El-Sahar A.E.; Saad M.A.; Assaf N.; Sayed R.H.; Inosine attenuates 3-nitropropionic acid-induced Huntington’s disease-like symptoms in rats via the activation of the A2AR/BDNF/TrKB/ERK/CREB signaling pathway. Life Sci 2022,300,120569 [DOI: 10.1016/j.lfs.2022.120569]
  129. Di Pardo A.; Castaldo S.; Amico E.; Stimulation of S1PR5 with A-971432, a selective agonist, preserves blood-brain barrier integrity and exerts therapeutic effect in an animal model of Huntington’s disease. Hum Mol Genet 2018,27(14),2490-2501 [DOI: 10.1093/hmg/ddy153]
  130. Simmons D.A.; Belichenko N.P.; Yang T.; A small molecule TrkB ligand reduces motor impairment and neuropathology in R6/2 and BACHD mouse models of Huntington’s disease. J Neurosci 2013,33(48),18712-18727 [DOI: 10.1523/JNEUROSCI.1310-13.2013]
  131. Jiang M.; Peng Q.; Liu X.; Small-molecule TrkB receptor agonists improve motor function and extend survival in a mouse model of Huntington’s disease. Hum Mol Genet 2013,22(12),2462-2470 [DOI: 10.1093/hmg/ddt098]
  132. Conforti P.; Zuccato C.; Gaudenzi G.; Binding of the repressor complex REST‐ mSIN 3b by small molecules restores neuronal gene transcription in Huntington’s disease models. J Neurochem 2013,127(1),22-35 [DOI: 10.1111/jnc.12348]
  133. Simmons D.A.; Belichenko N.P.; Ford E.C.; A small molecule p75NTR ligand normalizes signalling and reduces Huntington’s disease phenotypes in R6/2 and BACHD mice. Hum Mol Genet 2016,25(22),4920-4938 [PMID: 28171570]
  134. Pineda J.R.; Pardo R.; Zala D.; Yu H.; Humbert S.; Saudou F.; Genetic and pharmacological inhibition of calcineurin corrects the BDNF transport defect in Huntington’s disease. Mol Brain 2009,2(1),33 [DOI: 10.1186/1756-6606-2-33]
  135. Reick C; Ellrichmann G; Tsai T; Expression of brain-derived neurotrophic factor in astrocytes : Beneficial effects of glatiramer 402 Current Neuropharmacology, 2025, Vol. 23, No. 4 Azman and Zakaria acetate in the R6/2 and YAC128 mouse models of Huntington’s disease. Exp Neurol 2016,285(Pt A),12-23 [DOI: 10.1016/j.expneurol.2016.08.012]
  136. Corey-Bloom J.; Aikin A.M.; Gutierrez A.M.; Nadhem J.S.; Howell T.L.; Thomas E.A.; Beneficial effects of glatiramer acetate in Huntington’s disease mouse models: Evidence for BDNF-elevating and immunomodulatory mechanisms. Brain Res 2017,1673,102-110 [DOI: 10.1016/j.brainres.2017.08.013]
  137. Sayed N.H.; Fathy N.; Kortam M.A.; Rabie M.A.; Mohamed A.F.; Kamel A.S.; Vildagliptin attenuates Huntington’s disease through activation of GLP-1 receptor/PI3K/Akt/BDNF pathway in 3-nitropropionic acid rat model. Neurotherapeutics 2020,17(1),252-268 [DOI: 10.1007/s13311-019-00805-5]
  138. Saroj P.; Bansal Y.; Singh R.; Neuroprotective effects of roflumilast against quinolinic acid-induced rat model of Huntington’s disease through inhibition of NF-κB mediated neuroinflammatory markers and activation of cAMP/CREB/BDNF signaling pathway. Inflammopharmacology 2021,29(2),499-511 [DOI: 10.1007/s10787-020-00787-3]
  139. Patnaik A.; Spiombi E.; Frasca A.; Landsberger N.; Zagrebelsky M.; Korte M.; Fingolimod modulates dendritic architecture in a BDNF-dependent manner. Int J Mol Sci 2020,21(9),3079 [DOI: 10.3390/ijms21093079]
  140. Di Pardo A.; Amico E.; Favellato M.; FTY720 (fingolimod) is a neuroprotective and disease-modifying agent in cellular and mouse models of Huntington disease. Hum Mol Genet 2014,23(9),2251-2265 [DOI: 10.1093/hmg/ddt615]
  141. Miguez A.; García G.; Brito V.I.; Fingolimod (FTY720) enhances hippocampal synaptic plasticity and memory in Huntington’s disease by preventing p75NTR up-regulation and astrocyte-mediated inflammation. Hum Mol Genet 2014,24(17),4958-4970
  142. Miguez A.; García-Díaz Barriga G.; Brito V.; Fingolimod (FTY720) enhances hippocampal synaptic plasticity and memory in Huntington’s disease by preventing p75 NTR up-regulation and astrocyte-mediated inflammation. Hum Mol Genet 2015,24(17),4958-4970 [DOI: 10.1093/hmg/ddv218]
  143. Hutchinson A.J.; Chou C.L.; Israel D.D.; Xu W.; Regan J.W.; Activation of EP2 prostanoid receptors in human glial cell lines stimulates the secretion of BDNF. Neurochem Int 2009,54(7),439-446 [DOI: 10.1016/j.neuint.2009.01.018]
  144. Anglada-Huguet M.; Vidal-Sancho L.; Giralt A.; García-Díaz Barriga G.; Xifró X.; Alberch J.; Prostaglandin E2 EP2 activation reduces memory decline in R6/1 mouse model of Huntington’s disease by the induction of BDNF-dependent synaptic plasticity. Neurobiol Dis 2016,95,22-34 [DOI: 10.1016/j.nbd.2015.09.001]
  145. Eddings C.R.; Arbez N.; Akimov S.; Geva M.; Hayden M.R.; Ross C.A.; Pridopidine protects neurons from mutant-huntingtin toxicity via the sigma-1 receptor. Neurobiol Dis 2019,129,118-129 [DOI: 10.1016/j.nbd.2019.05.009]
  146. Francardo V.; Bez F.; Wieloch T.; Nissbrandt H.; Ruscher K.; Cenci M.A.; Pharmacological stimulation of sigma-1 receptors has neurorestorative effects in experimental parkinsonism. Brain 2014,137(7),1998-2014 [DOI: 10.1093/brain/awu107]
  147. Ionescu A.; Gradus T.; Altman T.; Targeting the sigma-1 receptor via pridopidine ameliorates central features of ALS pathology in a SOD1G93A model. Cell Death Dis 2019,10(3),210 [DOI: 10.1038/s41419-019-1451-2]
  148. Naia L.; Ly P.; Mota S.I.; The sigma-1 receptor mediates pridopidine rescue of mitochondrial function in Huntington disease models. Neurotherapeutics 2021,18(2),1017-1038 [DOI: 10.1007/s13311-021-01022-9]
  149. Ryskamp D; Wu J; Geva M; The sigma-1 receptor mediates the beneficial effects of pridopidine in a mouse model of Huntington disease. Neurobiol Dis 2017,97(Pt A),46-59 [DOI: 10.1016/j.nbd.2016.10.006]
  150. Ryskamp D.; Wu L.; Wu J.; Pridopidine stabilizes mushroom spines in mouse models of Alzheimer’s disease by acting on the sigma-1 receptor. Neurobiol Dis 2019,124,489-504 [DOI: 10.1016/j.nbd.2018.12.022]
  151. Geva M.; Kusko R.; Soares H.; Pridopidine activates neuroprotective pathways impaired in Huntington disease. Hum Mol Genet 2016,25(18),3975-3987 [DOI: 10.1093/hmg/ddw238]
  152. Squitieri F.; Di Pardo A.; Favellato M.; Amico E.; Maglione V.; Frati L.; Pridopidine, a dopamine stabilizer, improves motor performance and shows neuroprotective effects in Huntington disease R6/2 mouse model. J Cell Mol Med 2015,19(11),2540-2548 [DOI: 10.1111/jcmm.12604]
  153. Lenoir S.; Lahaye R.A.; Vitet H.; Pridopidine rescues BDNF/TrkB trafficking dynamics and synapse homeostasis in a Huntington disease brain-on-a-chip model. Neurobiol Dis 2022,173,105857 [DOI: 10.1016/j.nbd.2022.105857]
  154. Tasset I.; Sánchez-López F.; Agüera E.; NGF and nitrosative stress in patients with Huntington’s disease. J Neurol Sci 2012,315(1-2),133-136 [DOI: 10.1016/j.jns.2011.12.014]
  155. Calabrese V.; Colombrita C.; Guagliano E.; Protective effect of carnosine during nitrosative stress in astroglial cell cultures. Neurochem Res 2005,30(6-7),797-807 [DOI: 10.1007/s11064-005-6874-8]
  156. Mancuso C.; Capone C.; Ranieri S.C.; Bilirubin as an endogenous modulator of neurotrophin redox signaling. J Neurosci Res 2008,86(10),2235-2249 [DOI: 10.1002/jnr.21665]
  157. Tucci P.; Lattanzi R.; Severini C.; Saso L.; Nrf2 pathway in huntington’s disease (hd): What is its role? Int J Mol Sci 2022,23(23),15272 [DOI: 10.3390/ijms232315272]
  158. Di Rosa G.; Brunetti G.; Scuto M.; Healthspan enhancement by olive polyphenols in C. elegans wild type and Parkinson’s models. Int J Mol Sci 2020,21(11),3893 [DOI: 10.3390/ijms21113893]
  159. Catino S.; Paciello F.; Miceli F.; Ferulic acid regulates the Nrf2/heme oxygenase-1 system and counteracts trimethyltin-induced neuronal damage in the human neuroblastoma cell line SH-SY5Y. Front Pharmacol 2016,6,305 [DOI: 10.3389/fphar.2015.00305]
  160. Moretti D.; Tambone S.; Cerretani M.; NRF2 activation by reversible KEAP1 binding induces the antioxidant response in primary neurons and astrocytes of a Huntington’s disease mouse model. Free Radic Biol Med 2021,162,243-254 [DOI: 10.1016/j.freeradbiomed.2020.10.022]
  161. Ibrahim W.W.; Abdel Rasheed N.O.; Diapocynin neuroprotective effects in 3-nitropropionic acid Huntington’s disease model in rats: emphasis on Sirt1/Nrf2 signaling pathway. Inflammopharmacology 2022,30(5),1745-1758 [DOI: 10.1007/s10787-022-01004-z]
  162. Gendy A.M.; Soubh A.; Elnagar M.R.; New insights into the role of berberine against 3-nitropropionic acid-induced striatal neurotoxicity: Possible role of BDNF-TrkB-PI3K/Akt and NF-κB signaling. Food Chem Toxicol 2023,175,113721 [DOI: 10.1016/j.fct.2023.113721]
  163. Mohamed O.E.; Abdallah D.M.; Fayez A.M.; Mohamed R.A.; El-Abhar H.S.; Morin post-treatment surpassed calpeptin in ameliorating] 3-NP-induced cortical neurotoxicity via modulation of glutamate/calpain axis, Kidins220, and BDNF/TrkB/AKT/CREB trajectory. Int Immunopharmacol 2023,116,109771 [DOI: 10.1016/j.intimp.2023.109771]
  164. García-Díaz Barriga G.; Giralt A.; Anglada-Huguet M.; 7,8-dihydroxyflavone ameliorates cognitive and motor deficits in a Huntington’s disease mouse model through specific activation of the PLCγ1 pathway. Hum Mol Genet 2017,26(16),3144-3160 [DOI: 10.1093/hmg/ddx198]
  165. Hathorn T.; Snyder-Keller A.; Messer A.; Nicotinamide improves motor deficits and upregulates PGC-1α and BDNF gene expression in a mouse model of Huntington’s disease. Neurobiol Dis 2011,41(1),43-50 [DOI: 10.1016/j.nbd.2010.08.017]
  166. van Dellen A.; Blakemore C.; Deacon R.; York D.; Hannan A.J.; Delaying the onset of Huntington’s in mice. Nature 2000,404(6779),721-722 [DOI: 10.1038/35008142]
  167. Hockly E.; Cordery P.M.; Woodman B.; Environmental enrichment slows disease progression in R6/2 Huntington’s disease mice. Ann Neurol 2002,51(2),235-242 [DOI: 10.1002/ana.10094]
  168. Schilling G.; Savonenko A.V.; Coonfield M.L.; Environmental, pharmacological, and genetic modulation of the HD phenotype in transgenic mice. Exp Neurol 2004,187(1),137-149 [DOI: 10.1016/j.expneurol.2004.01.003]
  169. Spires T.L.; Grote H.E.; Varshney N.K.; Environmental enrichment rescues protein deficits in a mouse model of Huntington’s disease, indicating a possible disease mechanism. J Neurosci 2004,24(9),2270-2276 [DOI: 10.1523/JNEUROSCI.1658-03.2004]
  170. Sullivan F.R.; Bird E.D.; Alpay M.; Cha J.H.J.; Remotivation therapy and Huntington’s disease. J Neurosci Nurs 2001,33(3),136-142 [DOI: 10.1097/01376517-200106000-00005]
  171. Zajac M.S.; Pang T.Y.C.; Wong N.; Wheel running and environmental enrichment differentially modify exon‐specific BDNF expression in the hippocampus of wild‐type and pre‐motor symptomatic male and female Huntington’s disease mice. Hippocampus 2010,20(5),621-636 [DOI: 10.1002/hipo.20658]
  172. Pang T.Y.C.; Stam N.C.; Nithianantharajah J.; Howard M.L.; Hannan A.J.; Differential effects of voluntary physical exercise on behavioral and brain-derived neurotrophic factor expression deficits in Huntington’s disease transgenic mice. Neuroscience 2006,141(2),569-584 [DOI: 10.1016/j.neuroscience.2006.04.013]

MeSH Term

Huntington Disease
Brain-Derived Neurotrophic Factor
Humans
Animals

Chemicals

Brain-Derived Neurotrophic Factor

Word Cloud

Created with Highcharts 10.0.0BDNFHuntington'sdiseasestriatalneuronsneurodegenerationstriatumneurotrophinhereditaryneurodegenerativedisordermarkedseverecortexBrain-derivedneurotrophicfactormemberfamilygrowthfactorsplayscrucialrolemaintainingsurvivalproperfunctionDepletionlinkedimpairmentdeathleadingmanifestationmotorcognitivebehavioraldysfunctionscharacteristicreviewhighlightscurrentupdateneurobiologypathogenesismolecularevidenceaffectedsignalingpathwaysalsodiscussedadditionimpactexperimentalmanipulationlevelspharmaceuticalpotentialtreatmentexplicitlyreviewedBrain-DerivedNeurotrophicFactorDisease:NeurobiologyTherapeuticPotentialHuntington’s

Similar Articles

Cited By (1)