Implications of maximal muscle strength and aerobic capacity for lower extremity physical function in people with multiple sclerosis-a cross-sectional study.

Laurits Taul-Madsen, Ulrik Dalgas, Hjalte Riis, Magnus K Broløs, Jesper Lundbye-Jensen, Lars G Hvid
Author Information
  1. Ulrik Dalgas: Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark. ORCID
  2. Jesper Lundbye-Jensen: Movement & Neuroscience, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.
  3. Lars G Hvid: Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark. ORCID

Abstract

Background: Multiple sclerosis (MS) is characterized by impairment of physical function that is often linked to neuromuscular and cardiovascular deficits. However, the specific contributions of muscle strength and aerobic capacity to physical function in MS are not fully understood.
Objective: This study aimed to investigate the independent roles of maximal muscle strength (MVC) and aerobic capacity (VOpeak) on lower extremity physical function, as measured by the 6-minute walk test (6MWT) and five-time sit-to-stand test (5STS) in people with MS (pwMS).
Methods: In a cross-sectional study, 150 pwMS underwent assessment of VOpeak, maximal voluntary contraction (MVC), and physical function (6MWT and 5STS). Regression analyses were conducted to explore the associations between physiological parameters and physical function.
Results: MVC and VOpeak were moderately associated with (i.e., explained) 6MWT (R² = 0.40, p < 0.001), yet with VOpeak (β = 7.9, std. β = 0.45, p < 0.001) having a preferential influence compared to MVC (β = 48.2, std. β = 0.26, p < 0.001). MVC and VOpeak were weakly associated with (i.e., explained) 5STS (R² = 0.14, p < 0.001), yet with MVC (β = 0.06, std. β = 0.28, p = 0.004) having a preferential influence compared to VOpeak (β = 0.00, std. β = 0.16, p = 0.101).
Conclusion: Both maximal muscle strength and aerobic capacity to physical function in pwMS. Maximal muscle strength was preferentially linked to performance in the 5STS test, whereas aerobic capacity was preferentially linked to performance in the 6MWT. These findings support the need for tailored exercise interventions to target specific physiological deficits during MS rehabilitation.

Keywords

References

  1. Br J Sports Med. 2022 Jul;56(13):755-763 [PMID: 35228201]
  2. Mult Scler Relat Disord. 2015 Mar;4(2):151-8 [PMID: 25787191]
  3. BMJ Open. 2018 Mar 5;8(3):e018697 [PMID: 29506981]
  4. Acta Neurol Scand. 2022 Feb;145(2):229-238 [PMID: 34687036]
  5. J Appl Physiol Respir Environ Exerc Physiol. 1983 Nov;55(5):1558-64 [PMID: 6643191]
  6. Mult Scler J Exp Transl Clin. 2018 Jul 09;4(3):2055217318783352 [PMID: 30090640]
  7. Lancet Neurol. 2018 Feb;17(2):162-173 [PMID: 29275977]
  8. Neurology. 2009 Nov 3;73(18):1478-84 [PMID: 19884575]
  9. JAMA Netw Open. 2018 Oct 5;1(6):e183605 [PMID: 30646252]
  10. Exp Gerontol. 2021 Jul 15;150:111347 [PMID: 33872737]
  11. Mult Scler. 2023 Nov;29(13):1578-1594 [PMID: 37880966]
  12. Mult Scler. 2019 Jan;25(1):92-103 [PMID: 29113572]
  13. Anesth Analg. 2018 May;126(5):1763-1768 [PMID: 29481436]
  14. Mult Scler Relat Disord. 2022 Dec;68:104198 [PMID: 36257149]
  15. Mult Scler. 2015 Apr;21(5):599-611 [PMID: 25257612]
  16. Phys Ther. 1983 Jun;63(6):938-47 [PMID: 6856681]
  17. Arch Phys Med Rehabil. 2010 Sep;91(9):1410-7 [PMID: 20801260]
  18. Mult Scler. 2008 Apr;14(3):383-90 [PMID: 17942508]
  19. Med Sci Sports Exerc. 1982;14(5):377-81 [PMID: 7154893]
  20. Patient. 2011;4(3):189-201 [PMID: 21766914]
  21. Neurorehabil Neural Repair. 2020 Jun;34(6):523-532 [PMID: 32396032]
  22. Scand J Med Sci Sports. 2016 Dec;26(12):1435-1443 [PMID: 26681406]
  23. NeuroRehabilitation. 2015;37(1):149-55 [PMID: 26409700]
  24. Neurology. 2020 Aug 4;95(5):e446-e456 [PMID: 32554770]
  25. Mult Scler. 2012 Mar;18(3):364-71 [PMID: 21952098]
  26. Arch Phys Med Rehabil. 2021 Oct;102(10):2032-2048 [PMID: 33901439]
  27. Curr Neurol Neurosci Rep. 2019 Nov 13;19(11):88 [PMID: 31720862]
  28. BMJ Open. 2024 Aug 17;14(8):e085241 [PMID: 39153792]
  29. Exp Gerontol. 2020 Oct 1;139:111025 [PMID: 32712158]
  30. Acta Neurol Scand. 2009 Oct;120(4):251-7 [PMID: 19178385]
  31. PLoS One. 2021 Sep 30;16(9):e0257809 [PMID: 34591875]
  32. Scand J Rehabil Med. 1989;21(1):45-53 [PMID: 2711137]
  33. J Biomech. 2004 Nov;37(11):1689-97 [PMID: 15388311]
  34. Disabil Rehabil. 2012;34(26):2251-8 [PMID: 22612360]
  35. J Sci Med Sport. 2024 Jan;27(1):10-15 [PMID: 37951825]
  36. Physiother Can. 2011 Spring;63(2):166-80 [PMID: 22379256]
  37. Exp Ther Med. 2017 Jun;13(6):3163-3166 [PMID: 28588671]

Word Cloud

Created with Highcharts 10.0.0functionphysicalmusclestrengthaerobiccapacityMVCVOpeakmaximalβ = 0MS6MWT5STS0001stdlinkedstudytestpwMS=deficitsspecificlowerextremitypeoplecross-sectionalphysiologicalassociatedieexplainedp<yetβpreferentialinfluencecomparedp < 0p = 0preferentiallyperformanceexerciserehabilitationBackground:MultiplesclerosischaracterizedimpairmentoftenneuromuscularcardiovascularHowevercontributionsfullyunderstoodObjective:aimedinvestigateindependentrolesmeasured6-minutewalkfive-timesit-to-standMethods:150underwentassessmentvoluntarycontractionRegressionanalysesconductedexploreassociationsparametersResults:moderately407945β = 48226weaklyR² = 01406280040016101Conclusion:MaximalwhereasfindingssupportneedtailoredinterventionstargetImplicationsmultiplesclerosis-aPhysicalwalking

Similar Articles

Cited By