Strategies to Mitigate Cisplatin-Induced Ototoxicity: A Literature Review of Protective Agents, Mechanisms, and Clinical Gaps.

Alexandru Orasan, Mihaela-Cristina Negru, Anda Ioana Morgovan, Razvan Claudiu Fleser, Daniela Sandu, Adrian Mihail Sitaru, Alexandru-Catalin Motofelea, Nicolae Constantin Balica
Author Information
  1. Alexandru Orasan: ENT Department, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania.
  2. Mihaela-Cristina Negru: ENT Department, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania. ORCID
  3. Anda Ioana Morgovan: ENT Department, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania.
  4. Razvan Claudiu Fleser: Otorhinolaryngology Department, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania.
  5. Daniela Sandu: OncoHelp Cancer Centre, Radiation Oncology Department, "Victor Babes" University of Medicine and Pharmacy, Str. Rusu Sireanu nr. 34 Timisoara, 300041 Timisoara, Romania.
  6. Adrian Mihail Sitaru: Department of Pediatric Surgery, "Louis Turcanu" Emergency Clinical Hospital for Children, Iosif Nemoianu Street 2, 300011 Timisoara, Romania.
  7. Alexandru-Catalin Motofelea: Center for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babeș" University of Medicine and Pharmacy, 300041 Timișoara, Romania. ORCID
  8. Nicolae Constantin Balica: ENT Department, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania. ORCID

Abstract

BACKGROUND: Cisplatin, a widely used chemotherapeutic agent, is associated with significant ototoxicity, leading to progressive and irreversible sensorineural hearing loss in up to 93% of patients. Cisplatin generates reactive oxygen species (ROS) in the cochlea, activating apoptotic and necroptotic pathways that result in hair cell death. Inflammatory processes and nitrative stress also contribute to cochlear damage.
METHODS: This literature review was conducted to explore the mechanisms underlying cisplatin-induced ototoxicity and evaluate protective strategies, including both current and emerging approaches. A structured search was performed in multiple scientific databases, including PubMed and ScienceDirect, for articles published up to November 2024.
RESULTS: Current otoprotective strategies include systemic interventions such as antioxidants, anti-inflammatory agents, and apoptosis inhibitors, as well as localized delivery methods like intratympanic injection and nanoparticle-based systems. However, these approaches have limitations, including potential interference with cisplatin's antitumor efficacy and systemic side effects. Emerging strategies focus on genetic and biomarker-based risk stratification, novel otoprotective agents targeting alternative pathways, and combination therapies. Repurposed drugs like pravastatin also show promise in reducing cisplatin-induced ototoxicity.
CONCLUSIONS: Despite these advancements, significant research gaps remain in translating preclinical findings to clinical applications and developing selective otoprotective agents that do not compromise cisplatin's efficacy. This review examines the mechanisms of cisplatin-induced ototoxicity, current otoprotective strategies, and emerging approaches to mitigate this adverse effect.

Keywords

References

  1. Biomicrofluidics. 2017 May 15;11(3):034109 [PMID: 28611869]
  2. Cells. 2023 Jun 05;12(11): [PMID: 37296668]
  3. EMBO Mol Med. 2017 Jan;9(1):7-26 [PMID: 27794029]
  4. Redox Biol. 2018 Apr;14:361-370 [PMID: 29049980]
  5. Otolaryngol Head Neck Surg. 2011 Sep;145(3):452-7 [PMID: 21521888]
  6. Clin Otolaryngol. 2024 Jan;49(1):1-15 [PMID: 37818931]
  7. Ann N Y Acad Sci. 2003 Mar;983:278-85 [PMID: 12724232]
  8. Prog Nucleic Acid Res Mol Biol. 2002;71:1-68 [PMID: 12102553]
  9. Eur J Investig Health Psychol Educ. 2023 Oct 10;13(10):2226-2237 [PMID: 37887158]
  10. Int Immunopharmacol. 2016 Nov;40:517-523 [PMID: 27764742]
  11. Cell Death Dis. 2013 Feb 28;4:e519 [PMID: 23449455]
  12. J Neurosci. 2019 Apr 10;39(15):2951-2964 [PMID: 30733218]
  13. Antioxid Redox Signal. 2012 Oct 1;17(7):929-33 [PMID: 22524268]
  14. Int J Pediatr Otorhinolaryngol. 2015 Nov;79(11):1814-9 [PMID: 26307546]
  15. BMB Rep. 2015 Mar;48(3):172-7 [PMID: 25059279]
  16. Int J Mol Sci. 2020 Oct 21;21(20): [PMID: 33096924]
  17. Pharmacogenomics. 2017 Dec;18(18):1683-1695 [PMID: 29173064]
  18. Nutrition. 2006 Nov-Dec;22(11-12):1202-9 [PMID: 17095406]
  19. JAMA Oncol. 2017 Nov 01;3(11):1558-1562 [PMID: 28448657]
  20. Nat Genet. 2009 Dec;41(12):1345-9 [PMID: 19898482]
  21. S Afr J Commun Disord. 2015 Jun 17;62(1):E1-7 [PMID: 26304216]
  22. Eur J Cancer. 1990 Jan;26(1):1-3 [PMID: 2138472]
  23. Cell Death Dis. 2011 Jul 21;2:e180 [PMID: 21776018]
  24. Nat Genet. 2015 Mar;47(3):263-6 [PMID: 25665007]
  25. Hepatology. 2000 Dec;32(6):1272-9 [PMID: 11093734]
  26. Biomed Res Int. 2015;2015:617207 [PMID: 25874222]
  27. Expert Opin Drug Deliv. 2008 Oct;5(10):1059-76 [PMID: 18817513]
  28. J Pharm Bioallied Sci. 2021 Jan-Mar;13(1):46-60 [PMID: 34084048]
  29. Int J Audiol. 2018 Sep;57(sup4):S19-S24 [PMID: 28978238]
  30. Redox Biol. 2016 Dec;10:257-265 [PMID: 27821327]
  31. Hear Res. 2020 Apr;389:107905 [PMID: 32062294]
  32. Eur J Cancer. 2020 Oct;138:212-224 [PMID: 32905960]
  33. Cancer Biol Ther. 2005 May;4(5):585-92 [PMID: 15908783]
  34. Int J Mol Sci. 2020 Feb 19;21(4): [PMID: 32093110]
  35. Molecules. 2022 Dec 03;27(23): [PMID: 36500608]
  36. PLoS One. 2014 Oct 20;9(10):e110979 [PMID: 25330150]
  37. Int J Mol Sci. 2023 Nov 20;24(22): [PMID: 38003734]
  38. Hum Exp Toxicol. 2011 Jul;30(7):603-15 [PMID: 20650967]
  39. Curr Pharm Des. 2009;15(7):777-91 [PMID: 19275642]
  40. Can J Physiol Pharmacol. 2020 Jun;98(6):357-365 [PMID: 31846359]
  41. Jpn J Pharmacol. 1986 Feb;40(2):353-5 [PMID: 3702152]
  42. Neuroscience. 2007 Oct 12;149(1):213-22 [PMID: 17869439]
  43. J Neurosci Res. 2010 Oct;88(13):2976-90 [PMID: 20544827]
  44. Hear Res. 2013 May;299:37-45 [PMID: 23467171]
  45. Med Pediatr Oncol. 1991;19(4):295-300 [PMID: 2056973]
  46. Front Cell Neurosci. 2019 Jun 25;13:268 [PMID: 31293387]
  47. Front Pharmacol. 2023 Oct 19;14:1207141 [PMID: 37927600]
  48. S Afr J Commun Disord. 2020 May 19;67(1):e1-e10 [PMID: 32501032]
  49. Clin Cancer Res. 2009 Feb 15;15(4):1126-32 [PMID: 19228717]
  50. Hum Genomics. 2024 Oct 8;18(1):112 [PMID: 39380081]
  51. Front Pharmacol. 2024 Sep 24;15:1430469 [PMID: 39380912]
  52. Cancer Lett. 2024 Mar 1;584:216623 [PMID: 38246223]
  53. Antioxidants (Basel). 2020 Nov 25;9(12): [PMID: 33255728]
  54. Curr Med Chem. 2011;18(31):4866-71 [PMID: 21919841]
  55. Pediatr Blood Cancer. 2014 Nov;61(11):2012-7 [PMID: 24976616]
  56. Oxid Med Cell Longev. 2021 Jun 28;2021:5834418 [PMID: 34257812]
  57. Int J Audiol. 2018 Sep;57(sup4):S76-S88 [PMID: 29676584]
  58. Clin Cancer Res. 2017 Jul 1;23(13):3325-3333 [PMID: 28039263]
  59. Laryngoscope. 2008 Apr;118(4):706-11 [PMID: 18182968]
  60. Am J Respir Cell Mol Biol. 2015 Oct;53(4):513-24 [PMID: 25749103]
  61. J Proteome Res. 2008 Aug;7(8):3516-24 [PMID: 18578524]
  62. J Cancer Surviv. 2023 Feb;17(1):82-100 [PMID: 36729346]
  63. BMB Rep. 2017 Jan;50(1):25-30 [PMID: 28027722]
  64. Mol Ther Nucleic Acids. 2024 May 15;35(2):102207 [PMID: 38800558]
  65. Acta Otolaryngol. 2008 Apr;128(4):440-5 [PMID: 18368580]
  66. J Adv Res. 2025 Apr;70:271-286 [PMID: 38704090]
  67. Eur Arch Otorhinolaryngol. 2017 Mar;274(3):1365-1374 [PMID: 27878588]
  68. Pharmacol Res. 2021 Nov;173:105702 [PMID: 34102228]
  69. Acta Otolaryngol. 2022 Feb;142(2):127-131 [PMID: 35287541]
  70. Neuroreport. 2003 May 23;14(7):1025-9 [PMID: 12802196]
  71. Antioxidants (Basel). 2021 Nov 29;10(12): [PMID: 34943021]
  72. Expert Opin Drug Deliv. 2015 Mar;12(3):465-79 [PMID: 25347140]
  73. Sci Rep. 2019 Nov 12;9(1):16636 [PMID: 31719637]
  74. Front Cell Neurosci. 2023 Jun 01;17:1197051 [PMID: 37323582]
  75. Int J Oral Maxillofac Surg. 2020 Feb;49(2):237-243 [PMID: 31285095]
  76. Cell Res. 2011 Jan;21(1):146-58 [PMID: 21151201]
  77. J Clin Invest. 2021 Jan 4;131(1): [PMID: 33393488]
  78. Adv Drug Deliv Rev. 2017 Jun 1;115:57-81 [PMID: 28412324]
  79. Adv Drug Deliv Rev. 2008 Dec 14;60(15):1583-99 [PMID: 18848590]
  80. Paediatr Drugs. 2023 Mar;25(2):239-244 [PMID: 36517667]
  81. Bioorg Chem. 2019 Jul;88:102925 [PMID: 31003078]
  82. Eur J Pharm Biopharm. 2020 May;150:143-155 [PMID: 32173603]
  83. Laryngoscope. 2010 Jun;120(6):1208-13 [PMID: 20513041]
  84. Mini Rev Med Chem. 2002 Apr;2(2):103-11 [PMID: 12370072]
  85. Naunyn Schmiedebergs Arch Pharmacol. 2015 Sep;388(9):921-30 [PMID: 25971793]

Word Cloud

Created with Highcharts 10.0.0ototoxicitystrategiesotoprotectivecisplatin-inducedincludingapproachesagentsCisplatinsignificantpathwaysalsoreviewmechanismscurrentemergingsystemicantioxidantsapoptosislikecisplatin'sefficacyBACKGROUND:widelyusedchemotherapeuticagentassociatedleadingprogressiveirreversiblesensorineuralhearingloss93%patientsgeneratesreactiveoxygenspeciesROScochleaactivatingapoptoticnecroptoticresulthaircelldeathInflammatoryprocessesnitrativestresscontributecochleardamageMETHODS:literatureconductedexploreunderlyingevaluateprotectivestructuredsearchperformedmultiplescientificdatabasesPubMedScienceDirectarticlespublishedNovember2024RESULTS:Currentincludeinterventionsanti-inflammatoryinhibitorswelllocalizeddeliverymethodsintratympanicinjectionnanoparticle-basedsystemsHoweverlimitationspotentialinterferenceantitumorsideeffectsEmergingfocusgeneticbiomarker-basedriskstratificationnoveltargetingalternativecombinationtherapiesRepurposeddrugspravastatinshowpromisereducingCONCLUSIONS:DespiteadvancementsresearchgapsremaintranslatingpreclinicalfindingsclinicalapplicationsdevelopingselectivecompromiseexaminesmitigateadverseeffectStrategiesMitigateCisplatin-InducedOtotoxicity:LiteratureReviewProtectiveAgentsMechanismsClinicalGapschemotherapycisplatinnanoparticles

Similar Articles

Cited By