Deformation and phase transformation of dual-phase Ti under tension and compression process.

Thi-Thuy Binh Ngo, Van-Thuc Nguyen, Te-Hua Fang
Author Information
  1. Thi-Thuy Binh Ngo: Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 807, Taiwan.
  2. Van-Thuc Nguyen: Faculty of Mechanical Engineering, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City, Vietnam.
  3. Te-Hua Fang: Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 807, Taiwan. fang.tehua@msa.hinet.net.

Abstract

CONTEXT: This study utilizes molecular dynamics (MD) simulation to investigate polycrystalline dual-phase titanium (DP Ti) deformation behavior and phase transformation under tensile and compressive loading. The analysis focuses on the influence of hexagonal close-packed (HCP) phase fraction, strain rate, and temperature on the mechanical properties and microstructural evolution. The results indicate that increasing the HCP phase fraction enhances the elastic modulus (36.5%), yield strength, and strain hardening while maintaining acceptable ductility. The optimal mechanical performance is achieved at 75.4% HCP phase fraction. Strain rate has significantly influenced mechanical response, with higher rates promoting increased yield strength, elastic modulus, dislocation activity, and phase transformations to body-centered cubic (BCC) and amorphous phases. In contrast, raising the temperature from 300 to 900 K results in thermal softening, reduced strength, and diminished dislocation activity, alongside pronounced HCP-to-BCC phase transformation. Interphase boundaries are critical in shaping the deformation mechanisms, influencing dislocation evolution and strain hardening. During deformation, Shockley, Hirth, and other partial dislocations appear. These findings offer valuable insights into the deformation mechanisms and phase behavior of DP Ti, emphasizing its potential for applications requiring a balance between strength and ductility.
METHODS: The simulations utilized the open-source software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) for modeling atomic-scale interactions. Visualization of the evolving atomic structures was performed using OVITO (Open Visualization Tool). To analyze microstructural changes, the Dislocation Extraction Algorithm (DXA) and Common Neighbor Analysis (CNA) methods were employed.

Keywords

References

  1. Bishoyi BD, Sabat RK, Sahu J, Sahoo SK (2017) Effect of temperature on microstructure and texture evolution during uniaxial tension of commercially pure titanium. Mater Sci Eng: A 703:399–412. https://doi.org/10.1016/j.msea.2017.07.081 [DOI: 10.1016/j.msea.2017.07.081]
  2. Cui CX, Hu BM, Zhao LC, Liu SJ (2011) Titanium alloy production technology, market prospects and industry development. Mater Des 32(3):1684–1691. https://doi.org/10.1016/j.matdes.2010.09.011 [DOI: 10.1016/j.matdes.2010.09.011]
  3. Pushp P, Dasharath SM, Arati C (2022) Classification and applications of titanium and its alloys. Mater Today 54:537–542. https://doi.org/10.1016/j.matpr.2022.01.008 [DOI: 10.1016/j.matpr.2022.01.008]
  4. Zhang JM, Wang XC, Xu D, Yang Q, Zhao JW, Xue RJ (2022) Prediction of volume fraction of primary α phase in dual-phase titanium alloy based on laser ultrasonic. Measurement 195:111115. https://doi.org/10.1016/j.measurement.2022.111115 [DOI: 10.1016/j.measurement.2022.111115]
  5. Lütjering G (1998) Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys. Mater Sci Eng: A 243(1):32–45. https://doi.org/10.1016/S0921-5093(97)00778-8 [DOI: 10.1016/S0921-5093(97)00778-8]
  6. Zhang T, Wei DX, Lu E, Wang W, Wang KS, Li XQ, Zhang LC, Kato H, Lu WJ, Wang LQ (2022) Microstructure evolution and deformation mechanism of α+β dual-phase Ti-xNb-yTa-2Zr alloys with high performance. J Mater Sci Technol 131:68–81. https://doi.org/10.1016/j.jmst.2022.04.052 [DOI: 10.1016/j.jmst.2022.04.052]
  7. Patil S, Kekade S, Phapale K, Jadhav S, Powar A, Supare A, Singh R (2016) Effect of α and β phase volume fraction on machining characteristics of titanium alloy Ti6Al4V. Procedia Manuf 6:63–70. https://doi.org/10.1016/j.promfg.2016.11.009 [DOI: 10.1016/j.promfg.2016.11.009]
  8. Filip R, Kubiak K, Ziaja W, Sieniawski J (2003) The effect of microstructure on the mechanical properties of two-phase titanium alloys. J Mater Process Technol 133(1):84–89. https://doi.org/10.1016/S0924-0136(02)00248-0 [DOI: 10.1016/S0924-0136(02)00248-0]
  9. Fang QH, Chen Y, Li J, Jiang C, Liu B, Liu Y, Liaw PK (2019) Probing the phase transformation and dislocation evolution in dual-phase high-entropy alloys. Int J Plast 114:161–173. https://doi.org/10.1016/j.ijplas.2018.10.014 [DOI: 10.1016/j.ijplas.2018.10.014]
  10. Bishoyi BD, Sabat RK, Sahoo SK (2018) Effect of temperature on microstructure and texture evolutions during uniaxial compression of commercially pure titanium. Mater Sci Eng: A 718:398–411. https://doi.org/10.1016/j.msea.2018.01.128 [DOI: 10.1016/j.msea.2018.01.128]
  11. Tong YG, Tian N, Huang HF, Zhang ZB, Liang XB, Ji XX, Fang JZ, Hu YL (2023) Microstructure and deformation mechanism of dual-phase Al0.5CoCrNiFe high-entropy alloy. Rare Metals 42(6):2020–2027. https://doi.org/10.1007/s12598-022-02205-9 [DOI: 10.1007/s12598-022-02205-9]
  12. Zhang BW, Zhou LC, Sun Y, He WF, Chen YZ (2018) Molecular dynamics simulation of crack growth in pure titanium under uniaxial tension. Mol Simul 44(15):1252–1260. https://doi.org/10.1080/08927022.2018.1485150 [DOI: 10.1080/08927022.2018.1485150]
  13. Ngo TTB, Nguyen VT, Fang TH (2024) Mechanical properties and deformation mechanism of defected NiCrCoFeMn alloys. Mater Today Commun 41:110476. https://doi.org/10.1016/j.mtcomm.2024.110476 [DOI: 10.1016/j.mtcomm.2024.110476]
  14. Liu JY, Zhang LQ (2024) A study of compression deformation behavior of γ/α2 Interface in γ(TiAl) alloy using molecular dynamics simulation. J Mater Eng Perform 33(1):483–495. https://doi.org/10.1007/s11665-023-07984-5 [DOI: 10.1007/s11665-023-07984-5]
  15. Doan DQ, Fang TH, Chen TH (2020) Influences of grain size and temperature on tribological characteristics of CuAlNi alloys under nanoindentation and nanoscratch. Int J Mech Sci 185:105865. https://doi.org/10.1016/j.ijmecsci.2020.105865 [DOI: 10.1016/j.ijmecsci.2020.105865]
  16. Nguyen VT, Binh NTT, Fang TH (2022) Effects of mold shape mold vibration and substrate composition in FeNiCrCoMn high entropy alloys nanoimprint. Mater Today Commun 32:104042. https://doi.org/10.1016/j.mtcomm.2022.104042 [DOI: 10.1016/j.mtcomm.2022.104042]
  17. Ngo TTB, Nguyen VT, Fang TH (2023) Nanoscale friction behavior and deformation during copper chemical mechanical polishing process. J Mol Model 29(9):293. https://doi.org/10.1007/s00894-023-05699-x [DOI: 10.1007/s00894-023-05699-x]
  18. Xie LC, Yao YP, Liu C, Yu YM, Yin F, Qian DS, Song YL, Wang LQ, Zhang LC, Hua L (2023) Molecular Dynamics simulation and experimental verification of microstructure evolution of dual-phase Ti alloy during electroshocking treatment. Metall Mater Trans A 54(8):2982–2988. https://doi.org/10.1007/s11661-023-07094-w [DOI: 10.1007/s11661-023-07094-w]
  19. Wang P, Cao Y, Zhou DX, Li M, Jiang K, Zhou HF, Qu P, Wang HT (2023) Molecular dynamic simulations of the martensitic transformation for the dual-phase structure and dislocation activities in Ti80 alloys. Mech Mater 185:104753. https://doi.org/10.1016/j.mechmat.2023.104753 [DOI: 10.1016/j.mechmat.2023.104753]
  20. Li JY, Dong LG, Zang X, Zhang XM, Zhao WH, Wang F (2020) Study on micro-crack propagation behavior of single-crystal α-Ti under shear stress based on molecular dynamics. Mater Today Commun 25:101622. https://doi.org/10.1016/j.mtcomm.2020.101622 [DOI: 10.1016/j.mtcomm.2020.101622]
  21. Calderon-Moreno JM, Vasilescu C, Drob SI, Ivanescu S, Osiceanu P, Drob P, Popa M, Preda S, Vasilescu E (2014) Microstructural and mechanical properties, surface and electrochemical characterisation of a new Ti–Zr–Nb alloy for implant applications. J Alloys Compd 612:398–410. https://doi.org/10.1016/j.jallcom.2014.05.159 [DOI: 10.1016/j.jallcom.2014.05.159]
  22. Mendelev MI, Underwood T, Ackland G (2016) Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium. J Chem Phys 145(15). https://doi.org/10.1063/1.4964654
  23. Zhang JY, Sun ZP, Qiu D, Dai FZ, Zhang YS, Xu DS, Zhang WZ (2023) Dislocation-mediated migration of the α/β interfaces in titanium. Acta Mater 261:119364. https://doi.org/10.1016/j.actamat.2023.119364 [DOI: 10.1016/j.actamat.2023.119364]
  24. Wen TQ, Liu AW, Wang R, Zhang LF, Han J, Wang H, Srolovitz DJ, Wu ZX (2023) Modelling of dislocations, twins and crack-tips in HCP and BCC Ti. Int J Plast 166:103644. https://doi.org/10.1016/j.ijplas.2023.103644 [DOI: 10.1016/j.ijplas.2023.103644]
  25. Thompson AP, Aktulga HM, Berger R, Bolintineanu DS, Brown WM, Crozier PS, In’t Veld PJ, Kohlmeyer A, Moore SG, Nguyen TD (2022) LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput Phys Commun 271:108171. https://doi.org/10.1016/j.cpc.2021.108171 [DOI: 10.1016/j.cpc.2021.108171]
  26. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19. https://doi.org/10.1006/jcph.1995.1039 [DOI: 10.1006/jcph.1995.1039]
  27. Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model Simul Mater Sci Eng 18(1):015012. https://doi.org/10.1088/0965-0393/18/1/015012 [DOI: 10.1088/0965-0393/18/1/015012]
  28. Stukowski A, Albe K (2010) Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model Simul Mater Sci Eng 18(8):085001. https://doi.org/10.1088/0965-0393/18/8/085001 [DOI: 10.1088/0965-0393/18/8/085001]
  29. Stukowski A, Bulatov VV, Arsenlis A (2012) Automated identification and indexing of dislocations in crystal interfaces. Model Simul Mater Sci Eng 20(8):085007. https://doi.org/10.1039/D2CP03739D [DOI: 10.1039/D2CP03739D]
  30. Stukowski A (2012) Structure identification methods for atomistic simulations of crystalline materials. Model Simul Mater Sci Eng 20(4):045021. https://doi.org/10.1088/0965-0393/20/4/045021 [DOI: 10.1088/0965-0393/20/4/045021]
  31. Song HY, Zuo XD, An MR, Xiao MX, Li YL (2019) Superplastic dual-phase nanostructure Mg alloy: a molecular dynamics study. Comput Mater Sci 160:295–300. https://doi.org/10.1016/j.commatsci.2019.01.027 [DOI: 10.1016/j.commatsci.2019.01.027]
  32. Semiatin S, Bieler T (2001) Effect of texture and slip mode on the anisotropy of plastic flow and flow softening during hot working of Ti-6Al-4V. Metall Mater Trans A 32:1787–1799. https://doi.org/10.1007/s11661-001-0155-1 [DOI: 10.1007/s11661-001-0155-1]
  33. Chen SJ, Oh HS, Gludovatz B, Kim SJ, Park ES, Zhang Z, Ritchie RO, Yu Q (2020) Real-time observations of TRIP-induced ultrahigh strain hardening in a dual-phase CrMnFeCoNi high-entropy alloy. Nat Commun 11(1):826. https://doi.org/10.1038/s41467-020-14641-1 [DOI: 10.1038/s41467-020-14641-1]
  34. Trofimov E, Lutfullin RY, Kashaev R (2015) Elastic properties of the titanium alloy Ti-6Al-4V. J Пиcьмa o мaтepиaлax 5(1):67–69. https://doi.org/10.22226/2410-3535-2015-1-67-69
  35. Chen Z, Zhong DL, Sun Q, Ma XK (2021) Effect of α phase fraction on the dynamic mechanical behavior of a dual-phase metastable β titanium alloy Ti–10V–2Fe–3Al. Mater Sci Eng: A 816:141322. https://doi.org/10.1016/j.msea.2021.141322 [DOI: 10.1016/j.msea.2021.141322]
  36. Shimizu F, Ogata S, Li J (2007) Theory of shear banding in metallic glasses and molecular dynamics calculations. Mater Trans 48(11):2923–2927. https://doi.org/10.2320/matertrans.MJ200769 [DOI: 10.2320/matertrans.MJ200769]
  37. Ji Z, Yang H (2016) Microstructural design of two-phase titanium alloys by micro-scale strain distribution. Mater Lett 184:157–161. https://doi.org/10.1016/j.matlet.2016.08.045 [DOI: 10.1016/j.matlet.2016.08.045]
  38. Zhang H, Wei BQ, Ou XQ, Ni S, Zhou KC, Song M (2022) Dislocation induced FCC twinning at the HCP/FCC interfaces in a deformed Ti-5at.%Al alloy: experiments and simulations. J Phys Chem Solids 169:110835. https://doi.org/10.1016/j.jpcs.2022.110835 [DOI: 10.1016/j.jpcs.2022.110835]
  39. Pratap A, Kumar Katiyar N, Fan P, Goel S, Joshi SS (2024) Forest hardening and Hirth lock during grinding of copper evidenced by MD simulations. Manuf Lett 40:58–64. https://doi.org/10.1016/j.mfglet.2024.03.002 [DOI: 10.1016/j.mfglet.2024.03.002]
  40. Li SC, Kang YL, Zhu GM, Kuang S (2015) Effects of strain rates on mechanical properties and fracture mechanism of DP780 dual phase steel. J Mater Eng Perform 24(6):2426–2434. https://doi.org/10.1007/s11665-015-1495-0 [DOI: 10.1007/s11665-015-1495-0]
  41. Tsao L, Wu H, Leong J, Fang C (2012) Flow stress behavior of commercial pure titanium sheet during warm tensile deformation. Mater Des 34:179–184. https://doi.org/10.1016/j.matdes.2011.07.060 [DOI: 10.1016/j.matdes.2011.07.060]
  42. Li JJ, Tian CY, Zhang YH, Zhou HJ, Hu GM, Xia R (2020) Structure-property relation of nanoporous graphene membranes. Carbon 162:392–401. https://doi.org/10.1016/j.carbon.2020.02.066 [DOI: 10.1016/j.carbon.2020.02.066]
  43. Ji X, Emura S, Min X, Tsuchiya K (2017) Strain-rate effect on work-hardening behavior in β-type Ti-10Mo-1Fe alloy with TWIP effect. Mater Sci Eng: A 707:701–707. https://doi.org/10.1016/j.msea.2017.09.055 [DOI: 10.1016/j.msea.2017.09.055]
  44. Liu ZG, Li PJ, Xiong LT, Liu TY, He LJ (2017) High-temperature tensile deformation behavior and microstructure evolution of Ti55 titanium alloy. Mater Sci Eng: A 680:259–269. https://doi.org/10.1016/j.msea.2016.10.095 [DOI: 10.1016/j.msea.2016.10.095]
  45. Sun QJ, Wang GC (2014) Microstructure and superplasticity of TA15 alloy. Mater Sci Eng, A 606:401–408. https://doi.org/10.1016/j.msea.2014.03.117 [DOI: 10.1016/j.msea.2014.03.117]
  46. Josephine Prabha A, Raju S, Jeyaganesh B, Rai AK, Behera M, Vijayalakshmi M, Paneerselvam G, Johnson I (2011) Thermodynamics of α″→β phase transformation and heat capacity measurements in Ti–15at% Nb alloy. Physica B 406(22):4200–4209. https://doi.org/10.1016/j.physb.2011.08.008 [DOI: 10.1016/j.physb.2011.08.008]
  47. Song J, Wang LY, Zhang L, Wu WH, Gao ZB (2020) First-principles molecular dynamics studying the solidification of Ti-6Al-4V alloy. J Mol Liq 315:113606. https://doi.org/10.1016/j.molliq.2020.113606 [DOI: 10.1016/j.molliq.2020.113606]
  48. Lee WS, Lin CF (1998) High-temperature deformation behaviour of Ti6Al4V alloy evaluated by high strain-rate compression tests. J Mater Process Technol 75(1–3):127–136. https://doi.org/10.1016/S0924-0136(97)00302-6 [DOI: 10.1016/S0924-0136(97)00302-6]
  49. Ren JQ, Liu XT, Lei QF, Wang Q, Zhang XB, Zhang XD, Lu XF, Xue HT, Ding YT (2020) Deformation behavior of pure titanium with a rare HCP/FCC Boundary: an atomistic study. Mater Res 23:e20190638. https://doi.org/10.1590/1980-5373-MR-2019-0638 [DOI: 10.1590/1980-5373-MR-2019-0638]
  50. Wang JS, Xiao WL, Fu Y, Ren L, Ma CL (2022) Dependence of mechanical behavior on grain size of metastable Ti–Nb–O titanium alloy. Prog Nat Sci: Mater Int 32(1):63–71. https://doi.org/10.1016/j.pnsc.2021.09.011 [DOI: 10.1016/j.pnsc.2021.09.011]
  51. de Formanoir C, Martin G, Prima F, Allain SY, Dessolier T, Sun F, Vivès S, Hary B, Bréchet Y, Godet S (2019) Micromechanical behavior and thermal stability of a dual-phase α+ α’titanium alloy produced by additive manufacturing. Acta Mater 162:149–162. https://doi.org/10.1016/j.actamat.2018.09.050 [DOI: 10.1016/j.actamat.2018.09.050]
  52. Ramarolahy A, Castany P, Prima F, Laheurte P, Péron I, Gloriant T (2012) Microstructure and mechanical behavior of superelastic Ti–24Nb–0.5 O and Ti–24Nb–0.5 N biomedical alloys. J Mech Behav Biomed Mater 9:83–90. https://doi.org/10.1016/j.jmbbm.2012.01.017 [DOI: 10.1016/j.jmbbm.2012.01.017]

Word Cloud

Created with Highcharts 10.0.0phaseTideformationtransformationstrengthHCPfractionstrainmechanicaldislocationdual-phaseDPbehaviorratetemperaturepropertiesmicrostructuralevolutionresultselasticmodulusyieldhardeningductilityactivitymechanismssimulationsVisualizationDeformationCONTEXT:studyutilizesmoleculardynamicsMDsimulationinvestigatepolycrystallinetitaniumtensilecompressiveloadinganalysisfocusesinfluencehexagonalclose-packedindicateincreasingenhances365%maintainingacceptableoptimalperformanceachieved754%Strainsignificantlyinfluencedresponsehigherratespromotingincreasedtransformationsbody-centeredcubicBCCamorphousphasescontrastraising300900 KthermalsofteningreduceddiminishedalongsidepronouncedHCP-to-BCCInterphaseboundariescriticalshapinginfluencingShockleyHirthpartialdislocationsappearfindingsoffervaluableinsightsemphasizingpotentialapplicationsrequiringbalanceMETHODS:utilizedopen-sourcesoftwareLAMMPSLarge-scaleAtomic/MolecularMassivelyParallelSimulatormodelingatomic-scaleinteractionsevolvingatomicstructuresperformedusingOVITOOpenToolanalyzechangesDislocationExtractionAlgorithmDXACommonNeighborAnalysisCNAmethodsemployedtensioncompressionprocessAtomisticbehaviourDual-phaseMechanicalPhase

Similar Articles

Cited By