Interactions of flavonoid and coumarin derivative compounds with transforming growth factor-beta receptor 1 (TGF-βR1): integrating virtual screening, molecular dynamics, maximum common substructure, and ADMET approaches in the treatment of idiopathic pulmonary fibrosis.

Erman Salih Istifli, Paulo A Netz
Author Information
  1. Erman Salih Istifli: Department of Biology, Adana, Faculty of Science and Literature, Cukurova University, Adana, Turkey. ermansalih@gmail.com. ORCID
  2. Paulo A Netz: Theoretical Chemistry Group, Institute of Chemistry, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil. netz@iq.ufrgs.br. ORCID

Abstract

CONTEXT: Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease characterized by very limited treatment options and significant side effects from existing therapies, highlighting the urgent need for more effective drug-like molecules. Transforming growth factor-beta receptor 1 (TGF-βR1) is a key player in the pathogenesis of IPF and represents a critical target for therapeutic intervention. In this study, the potential of plant-derived flavonoid and coumarin compounds as novel TGF-βR1 inhibitors was explored. A total of 1206 flavonoid and coumarin derivatives were investigated through a series of computational approaches, including drug-like filtering, virtual screening, molecular docking, 200-ns molecular dynamics (MD) simulations in triplicate, maximum common substructure (MCS) analysis, and absorption-distribution-metabolism-excretion-toxicity (ADMET) profiling. 2',3',4'-trihydroxyflavone and dicoumarol emerged as promising plant-based hit candidates, exhibiting comparable docking scores, MD-based structural stability, and more negative MM/PBSA binding free energy relative to the co-crystallized inhibitor, while surpassing pirfenidone in these parameters and demonstrating superior pharmacological properties. In light of the findings from this study, 2',3',4'-trihydroxyflavone and dicoumarol could be considered novel TGF-βR1 inhibitors for IPF treatment, and it is recommended that their structural optimization be pursued through in vitro binding assays and in vivo animal studies.
METHODS: The initial dataset of 1206 flavonoid and coumarin derivatives was filtered for drug-likeness using Lipinski's Rule of Five in the ChemMaster-Pro 1.2 program, resulting in 161 potential candidates. These compounds were then subjected to virtual screening against the TGF-βR1 kinase domain (PDB ID: 6B8Y) using AutoDock Vina 1.2.5, identifying the top three hit compounds-dicoumarol, 2',3',4'-trihydroxyflavone, and 2',3'-dihydroxyflavone. These hits underwent further exhaustive molecular docking for refinement of docking poses, followed by 200-ns MD simulations in triplicate using the AMBER03 force field in GROMACS. Subsequently, the binding free energies were calculated using the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) method. MCS analysis was conducted to determine shared structural features among the top three hits, while ADMET properties were predicted using Deep-PK, a deep learning-based platform. Finally, the ligand-protein interactions were further visualized, analyzed, and rendered using ChimeraX, Discovery Studio Visualizer, and Visual Molecular Dynamics (VMD) program.

Keywords

References

  1. Hou Y, Wang G, Han S, Liu H, Jia X (2023) Network pharmacology and molecular docking to explore the pharmacological mechanism of Yifei Tongluo granules in treating idiopathic pulmonary fibrosis: a review. Medicine 102(22):e33729. https://doi.org/10.1097/MD.0000000000033729 [DOI: 10.1097/MD.0000000000033729]
  2. Mao C, Du Y, Niu K, Yang F, Bai C, Zhou B, Niu Y (2024) Investigation of the mechanism of action of Qingzaojiufei decoction on idiopathic pulmonary fibrosis based on network pharmacology and experimental validation. Nat Prod Commun 19(3):1934578X241242274. https://doi.org/10.1177/1934578X241242274 [DOI: 10.1177/1934578X241242274]
  3. Raghu G, Remy-Jardin M, Richeldi L, Thomson CC, Inoue Y, Johkoh T, Kreuter M, Lynch DA, Maher TM, Martinez FJ (2022) Idiopathic pulmonary fibrosis (an update) and progressive pulmonary fibrosis in adults: an official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med 205(9):e18–e47. https://doi.org/10.1164/rccm.202202-0399ST [DOI: 10.1164/rccm.202202-0399ST]
  4. Glass DS, Grossfeld D, Renna HA, Agarwala P, Spiegler P, DeLeon J, Reiss AB (2022) Idiopathic pulmonary fibrosis: current and future treatment. Clin Respir J 16(2):84–96. https://doi.org/10.1111/crj.13466 [DOI: 10.1111/crj.13466]
  5. Raghu G, Remy-Jardin M, Myers JL, Richeldi L, Ryerson CJ, Lederer DJ, Behr J, Cottin V, Danoff SK, Morell F (2018) Diagnosis of idiopathic pulmonary fibrosis An official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med 198(5):e44–e68. https://doi.org/10.1164/rccm.201807-1255ST [DOI: 10.1164/rccm.201807-1255ST]
  6. Lechowicz K, Drożdżal S, Machaj F, Rosik J, Szostak B, Zegan-Barańska M, Biernawska J, Dabrowski W, Rotter I, Kotfis K (2020) COVID-19: the potential treatment of pulmonary fibrosis associated with SARS-CoV-2 infection. J Clin Med 9(6):1917. https://doi.org/10.3390/jcm9061917 [DOI: 10.3390/jcm9061917]
  7. Yao Y, Yuan Y, Lu Z, Ma Y, Xie Y, Wang M, Liu F, Zhu C, Lin C (2021) Effects of Nervilia fordii extract on pulmonary fibrosis through TGF-β/Smad signaling pathway. Front Pharmacol 12:659627. https://doi.org/10.3389/fphar.2021.659627 [DOI: 10.3389/fphar.2021.659627]
  8. Zhang Y, Gu L, PuYang J, Liu M, Xia Q, Jiang W, Cao M (2021) Systems bioinformatic approach to determine the pharmacological mechanisms of Radix Astragali and Radix Angelicae sinensis in idiopathic pulmonary fibrosis. Pharmacogn Mag 17(76):708–718. https://doi.org/10.4103/pm.pm_9_21 [DOI: 10.4103/pm.pm_9_21]
  9. Zhang B, Gao D, Xu G, Zhu W, Liu J, Sun R, Wang L, Zhang C, Ding Q, Shi Y (2022) Integrated multicomponent analysis based on UHPLC-Q-Exactive Orbitrap-MS and network pharmacology to elucidate the potential mechanism of Baoyuan decoction against idiopathic pulmonary fibrosis. Phytochem Anal 33(5):678–695. https://doi.org/10.1002/pca.3120 [DOI: 10.1002/pca.3120]
  10. Jiang C, Huang H, Liu J, Wang Y, Lu Z, Xu Z (2012) Adverse events of pirfenidone for the treatment of pulmonary fibrosis: a meta-analysis of randomized controlled trials. https://doi.org/10.1371/journal.pone.0047024
  11. Aravena C, Labarca G, Venegas C, Arenas A, Rada G (2015) Pirfenidone for idiopathic pulmonary fibrosis: a systematic review and meta-analysis. PLoS ONE 10(8):e0136160. https://doi.org/10.1371/journal.pone.0136160 [DOI: 10.1371/journal.pone.0136160]
  12. Pleasants R, Tighe RM (2019) Management of idiopathic pulmonary fibrosis. Ann Pharmacother 53(12):1238–1248. https://doi.org/10.1177/1060028019862497 [DOI: 10.1177/1060028019862497]
  13. Kato M, Sasaki S, Nakamura T, Kurokawa K, Yamada T, Ochi Y (2019) Gastrointestinal adverse effects of nintedanib and the associated risk factors in patients with idiopathic pulmonary fibrosis. Sci Rep 9:12062. https://doi.org/10.1038/s41598-019-48593-4 [DOI: 10.1038/s41598-019-48593-4]
  14. Tirunavalli SK, Kuncha M, Sistla R, Andugulapati SB (2023) Targeting TGF-β/periostin signaling by sesamol ameliorates pulmonary fibrosis and improves lung function and survival. J Nutr Biochem 116:109294. https://doi.org/10.1016/j.jnutbio.2023.109294 [DOI: 10.1016/j.jnutbio.2023.109294]
  15. Mei Q, Liu Z, Zuo H, Yang Z, Qu J (2022) Idiopathic pulmonary fibrosis: an update on pathogenesis. Front Pharmacol 12:797292. https://doi.org/10.3389/fphar.2021.797292 [DOI: 10.3389/fphar.2021.797292]
  16. Ye Z, Hu Y (2021) TGF-β1: Gentlemanly orchestrator in idiopathic pulmonary fibrosis. Int J Mol Med 48(1):1–14. https://doi.org/10.3389/fphar.2021.797292 [DOI: 10.3389/fphar.2021.797292]
  17. Parada C, Li J, Iwata J, Suzuki A, Chai Y (2013) CTGF mediates Smad-dependent transforming growth factor β signaling to regulate mesenchymal cell proliferation during palate development. Mol Cell Biol. https://doi.org/10.1128/MCB.00615-13 [DOI: 10.1128/MCB.00615-13]
  18. Xiao L, Du Y, Shen Y, He Y, Zhao H, Li Z (2012) TGF-beta 1 induced fibroblast proliferation is mediated by the FGF-2/ERK pathway. Front Biosci (Landmark Ed) 17(7):2667–2674. https://doi.org/10.2741/4077 [DOI: 10.2741/4077]
  19. Shintani Y, Maeda M, Chaika N, Johnson KR, Wheelock MJ (2008) Collagen I promotes epithelial-to-mesenchymal transition in lung cancer cells via transforming growth factor–β signaling. Am J Respir Cell Mol Biol 38(1):95–104. https://doi.org/10.1165/rcmb.2007-0071OC [DOI: 10.1165/rcmb.2007-0071OC]
  20. Karande S, Das B, Acharya SS, Kumar A, Patel H, Sharma A, Gupta M, Ahmad I, Bhandare V, Sharma K (2024) Computational and in vitro screening validates the repositioning potential of Coxibs as anti-fibrotic agents. J Biomol Struct Dyn 1–13. https://doi.org/10.1080/07391102.2024.2318655
  21. Derynck R, Jarrett JA, Chen EY, Eaton DH, Bell JR, Assoian RK, Roberts AB, Sporn MB, Goeddel DV (1985) Human transforming growth factor-β complementary DNA sequence and expression in normal and transformed cells. Nature 316(6030):701–705. https://doi.org/10.1038/316701a0 [DOI: 10.1038/316701a0]
  22. Massagué J, Andres J, Attisano L, Cheifetz S, López-Casillas F, Ohtsuki M, Wrana JL (1992) TGF-β receptors. Mol Reprod Dev 32(2):99–104. https://doi.org/10.1002/mrd.1080320204 [DOI: 10.1002/mrd.1080320204]
  23. Vander Ark A, Cao J, Li X (2018) TGF-β receptors: In and beyond TGF-β signaling. Cell Signal 52:112–120. https://doi.org/10.1016/j.cellsig.2018.09.002
  24. Rojas A, Padidam M, Cress D, Grady WM (2009) TGF-β receptor levels regulate the specificity of signaling pathway activation and biological effects of TGF-β. Biochim Biophys Acta (BBA) Mol Cell Res 1793(7):1165–1173 [DOI: 10.1016/j.bbamcr.2009.02.001]
  25. Zi Z, Chapnick DA, Liu X (2012) Dynamics of TGF-β/Smad signaling. FEBS Lett 586(14):1921–1928. https://doi.org/10.1016/j.febslet.2012.03.063 [DOI: 10.1016/j.febslet.2012.03.063]
  26. Tzavlaki K, Moustakas A (2020) TGF-β Signaling. Biomolecules 10(3):487. https://doi.org/10.3390/biom10030487 [DOI: 10.3390/biom10030487]
  27. Hill CS (2009) Nucleocytoplasmic shuttling of Smad proteins. Cell Res 19(1):36–46. https://doi.org/10.1038/cr.2008.325 [DOI: 10.1038/cr.2008.325]
  28. Hata A, Chen Y-G (2016) TGF-β signaling from receptors to Smads. Cold Spring Harb Perspect Biol 8(9):a022061. https://doi.org/10.1101/cshperspect.a022061 [DOI: 10.1101/cshperspect.a022061]
  29. Wiafe B, Adesida A, Churchill T, Adewuyi EE, Li Z, Metcalfe P (2017) Hypoxia-increased expression of genes involved in inflammation, dedifferentiation, pro-fibrosis, and extracellular matrix remodeling of human bladder smooth muscle cells. In Vitro Cell Dev Biol Anim 53:58–66. https://doi.org/10.1007/s11626-016-0085-2 [DOI: 10.1007/s11626-016-0085-2]
  30. Peterson JM, Jay JW, Wang Y, Joglar AA, Prasai A, Palackic A, Wolf SE, El Ayadi A (2022) Galunisertib exerts antifibrotic effects on TGF-β-induced fibroproliferative dermal fibroblasts. Int J Mol Sci 23(12):6689. https://doi.org/10.3390/ijms23126689 [DOI: 10.3390/ijms23126689]
  31. Tatler AL, Jenkins G (2012) TGF-β activation and lung fibrosis. Proc Am Thorac Soc 9(3):130–136. https://doi.org/10.1513/pats.201201-003AW [DOI: 10.1513/pats.201201-003AW]
  32. Goodwin A, Jenkins G (2009) Role of integrin-mediated TGFβ activation in the pathogenesis of pulmonary fibrosis. Biochem Soc Trans 37(4):849–854. https://doi.org/10.1042/BST0370849 [DOI: 10.1042/BST0370849]
  33. Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, Zhou Z, Shu G, Yin G (2022) Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther 7(1):3. https://doi.org/10.1038/s41392-021-00762-6 [DOI: 10.1038/s41392-021-00762-6]
  34. Oda K, Yatera K, Izumi H, Ishimoto H, Yamada S, Nakao H, Hanaka T, Ogoshi T, Noguchi S, Mukae H (2016) Profibrotic role of WNT10A via TGF-β signaling in idiopathic pulmonary fibrosis. Respir Res 17:1–14. https://doi.org/10.1186/s12931-016-0357-0 [DOI: 10.1186/s12931-016-0357-0]
  35. Peng J, Xiao X, Li S, Lyu X, Gong H, Tan S, Dong L, Sanders YY, Zhang X (2023) Aspirin alleviates pulmonary fibrosis through PI3K/AKT/mTOR-mediated autophagy pathway. Exp Gerontol 172:112085. https://doi.org/10.1016/j.exger.2023.112085 [DOI: 10.1016/j.exger.2023.112085]
  36. Papavassiliou KA, Sofianidi AA, Spiliopoulos FG, Gogou VA, Gargalionis AN, Papavassiliou AG (2024) YAP/TAZ Signaling in the pathobiology of pulmonary fibrosis. Cells 13(18):1519. https://doi.org/10.3390/cells13181519 [DOI: 10.3390/cells13181519]
  37. Khalil N, Greenberg A The role of TGF‐β in pulmonary fibrosis. In: Ciba Foundation Symposium 157‐Clinical Applications of TGF‐β: Clinical Applications of TGF‐β: Ciba Foundation Symposium 157, 2007. Wiley Online Library, pp 194–211. https://doi.org/10.1002/9780470514061.ch13
  38. Saito A, Horie M, Micke P, Nagase T (2018) The role of TGF-β signaling in lung cancer associated with idiopathic pulmonary fibrosis. Int J Mol Sci 19(11):3611. https://doi.org/10.3390/ijms19113611 [DOI: 10.3390/ijms19113611]
  39. Epstein Shochet G, Brook E, Bardenstein-Wald B, Shitrit D (2020) TGF-β pathway activation by idiopathic pulmonary fibrosis (IPF) fibroblast derived soluble factors is mediated by IL-6 trans-signaling. Respir Res 21:1–10. https://doi.org/10.1186/s12931-020-1319-0 [DOI: 10.1186/s12931-020-1319-0]
  40. Zhou Y-M, Dong X-R, Xu D, Tang J, Cui Y-L (2023) Therapeutic potential of traditional Chinese medicine for interstitial lung disease. J Ethnopharmacol 318:116952. https://doi.org/10.1016/j.jep.2023.116952 [DOI: 10.1016/j.jep.2023.116952]
  41. Hasan M, Paul NC, Paul SK, Saikat ASM, Akter H, Mandal M, Lee S-S (2022) Natural product-based potential therapeutic interventions of pulmonary fibrosis. Molecules 27(5):1481. https://doi.org/10.3390/molecules27051481 [DOI: 10.3390/molecules27051481]
  42. Zhao B, Shu X, Zhang H (2024) Pulmonary diseases and traditional Chinese medicine. In: Lung biology and pathophysiology. Taylor & Francis, p 28. https://doi.org/10.1201/9781003355243-17
  43. Deng D, Pei H, Lan T, Zhu J, Tang M, Xue L, Yang Z, Zheng S, Ye H, Chen L (2020) Synthesis and discovery of new compounds bearing coumarin scaffold for the treatment of pulmonary fibrosis. Eur J Med Chem 185:111790. https://doi.org/10.1016/j.ejmech.2019.111790 [DOI: 10.1016/j.ejmech.2019.111790]
  44. Flores-Morales V, Villasana-Ruíz AP, Garza-Veloz I, González-Delgado S, Martinez-Fierro ML (2023) Therapeutic effects of coumarins with different substitution patterns. Molecules 28(5):2413. https://doi.org/10.3390/molecules28052413 [DOI: 10.3390/molecules28052413]
  45. Liu Y-M, Nepali K, Liou J-P (2017) Idiopathic pulmonary fibrosis: current status, recent progress, and emerging targets. J Med Chem 60(2):527–553 [DOI: 10.1021/acs.jmedchem.6b00935]
  46. Fois AG, Sotgiu E, Scano V, Negri S, Mellino S, Zinellu E, Pirina P, Pintus G, Carru C, Mangoni AA (2020) Effects of pirfenidone and nintedanib on markers of systemic oxidative stress and inflammation in patients with idiopathic pulmonary fibrosis: a preliminary report. Antioxidants 9(11):1064. https://doi.org/10.3390/antiox9111064 [DOI: 10.3390/antiox9111064]
  47. Wollin L, Wex E, Pautsch A, Schnapp G, Hostettler KE, Stowasser S, Kolb M (2015) Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur Respir J 45(5):1434–1445. https://doi.org/10.1183/09031936.00174914 [DOI: 10.1183/09031936.00174914]
  48. Javed Z, Khan K, Rasheed A, Sadia H, Raza S, Salehi B, Cho WC, Sharifi-Rad J, Koch W, Kukula-Koch W (2021) MicroRNAs and natural compounds mediated regulation of TGF signaling in prostate cancer. Front Pharmacol 11:613464. https://doi.org/10.3389/fphar.2020.613464 [DOI: 10.3389/fphar.2020.613464]
  49. Gray AL, Stephens CA, Bigelow RL, Coleman DT, Cardelli JA (2014) The polyphenols (−)-epigallocatechin-3-gallate and luteolin synergistically inhibit TGF-β-induced myofibroblast phenotypes through RhoA and ERK inhibition. PLoS ONE 9(10):e109208. https://doi.org/10.1371/journal.pone.0109208 [DOI: 10.1371/journal.pone.0109208]
  50. Meng X-m, Zhang Y, Huang X-R, Ren G-l, Li J, Lan HY (2015) Treatment of renal fibrosis by rebalancing TGF-β/Smad signaling with the combination of asiatic acid and naringenin. Oncotarget 6(35):36984. https://doi.org/10.18632/oncotarget.6100 [DOI: 10.18632/oncotarget.6100]
  51. Gursoy N, Sarikurkcu C, Cengiz M, Solak MH (2009) Antioxidant activities, metal contents, total phenolics and flavonoids of seven Morchella species. Food Chem Toxicol 47(9):2381–2388. https://doi.org/10.1016/j.fct.2009.06.032 [DOI: 10.1016/j.fct.2009.06.032]
  52. Sarikurkcu C, Erdoğmuş SF, Yazar T (2024) Phytochemical analysis and in vitro anti-inflammatory, anticancer activities of Marrubium lutescens on melanoma cancer cell line and molecular docking studies. Journal of Herbal Medicine 46:100907. https://doi.org/10.1016/j.hermed.2024.100907 [DOI: 10.1016/j.hermed.2024.100907]
  53. Kontogiorgis CA, Savvoglou K, Hadjipavlou-Litina DJ (2006) Antiinflammatory and antioxidant evaluation of novel coumarin derivatives. J Enzyme Inhib Med Chem 21(1):21–29. https://doi.org/10.1080/14756360500323022 [DOI: 10.1080/14756360500323022]
  54. Fylaktakidou KC, Hadjipavlou-Litina DJ, Litinas KE, Nicolaides DN (2004) Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities. Curr Pharm Des 10(30):3813–3833. https://doi.org/10.2174/1381612043382710 [DOI: 10.2174/1381612043382710]
  55. Bezerra FS, Lanzetti M, Nesi RT, Nagato AC, Silva CP, Kennedy-Feitosa E, Melo AC, Cattani-Cavalieri I, Porto LC, Valenca SS (2023) Oxidative stress and inflammation in acute and chronic lung injuries. Antioxidants 12(3):548. https://doi.org/10.3390/antiox12030548 [DOI: 10.3390/antiox12030548]
  56. Meng XY, Zhang HX, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7(2):146–157. https://doi.org/10.2174/157340911795677602 [DOI: 10.2174/157340911795677602]
  57. Batool M, Ahmad B, Choi S (2019) A structure-based drug discovery paradigm. Int J Mol Sci 20(11):2783. https://doi.org/10.3390/ijms20112783 [DOI: 10.3390/ijms20112783]
  58. Rester U (2008) From virtuality to reality-virtual screening in lead discovery and lead optimization: a medicinal chemistry perspective. Curr Opin Drug Discov Devel 11(4):559–568 [PMID: 18600572]
  59. Kalsi N, Gopalakrishnan C, Rajendran V, Purohit R (2016) Biophysical aspect of phosphatidylinositol 3-kinase and role of oncogenic mutants (E542K & E545K). J Biomol Struct Dyn 34(12):2711–2721. https://doi.org/10.1080/07391102.2015.1127774 [DOI: 10.1080/07391102.2015.1127774]
  60. Singh R, Purohit R (2023) Computational analysis of protein-ligand interaction by targeting a cell cycle restrainer. Comput Methods Programs Biomed 231:107367. https://doi.org/10.1016/j.cmpb.2023.107367 [DOI: 10.1016/j.cmpb.2023.107367]
  61. Bhardwaj VK, Purohit R (2023) A comparative study on inclusion complex formation between formononetin and β-cyclodextrin derivatives through multiscale classical and umbrella sampling simulations. Carbohyd Polym 310:120729. https://doi.org/10.1016/j.carbpol.2023.120729 [DOI: 10.1016/j.carbpol.2023.120729]
  62. Bhardwaj V, Singh R, Singh P, Purohit R, Kumar S (2020) Elimination of bitter-off taste of stevioside through structure modification and computational interventions. J Theor Biol 486:110094. https://doi.org/10.1016/j.jtbi.2019.110094 [DOI: 10.1016/j.jtbi.2019.110094]
  63. Singh R, Bhardwaj VK, Sharma J, Das P, Purohit R (2022) Identification of selective cyclin-dependent kinase 2 inhibitor from the library of pyrrolone-fused benzosuberene compounds: an in silico exploration. J Biomol Struct Dyn 40(17):7693–7701. https://doi.org/10.1080/07391102.2021.1900918 [DOI: 10.1080/07391102.2021.1900918]
  64. Singh R, Bhardwaj VK, Purohit R (2022) Inhibition of nonstructural protein 15 of SARS-CoV-2 by golden spice: a computational insight. Cell Biochem Funct 40(8):926–934. https://doi.org/10.1002/cbf.3753 [DOI: 10.1002/cbf.3753]
  65. Antar SA, Saleh MA, Al-Karmalawy AA (2022) Investigating the possible mechanisms of pirfenidone to be targeted as a promising anti-inflammatory, anti-fibrotic, anti-oxidant, anti-apoptotic, anti-tumor, and/or anti-SARS-CoV-2. Life Sci 309:121048. https://doi.org/10.1016/j.lfs.2022.121048 [DOI: 10.1016/j.lfs.2022.121048]
  66. Sartiani L, Bartolucci G, Pallecchi M, Spinelli V, Cerbai E (2022) Pharmacological basis of the antifibrotic effects of pirfenidone: mechanistic insights from cardiac in-vitro and in-vivo models. Front Cardiovasc Med 9:751499. https://doi.org/10.3389/fcvm.2022.751499 [DOI: 10.3389/fcvm.2022.751499]
  67. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: an open chemical toolbox. J Cheminform 3:33. https://doi.org/10.1186/1758-2946-3-33 [DOI: 10.1186/1758-2946-3-33]
  68. Eberhardt J, Santos-Martins D, Tillack A, Forli S (2021) AutoDock Vina 1.2. 0: new docking methods, expanded force field, and Python bindings. J Chem Inf Model 61(8):3891–8. https://doi.org/10.1021/acs.jcim.1c00203 [DOI: 10.1021/acs.jcim.1c00203]
  69. Rossino G, Rui M, Pozzetti L, Schepmann D, Wünsch B, Zampieri D, Pellavio G, Laforenza U, Rinaldi S, Colombo G (2020) Setup and validation of a reliable docking protocol for the development of neuroprotective agents by targeting the sigma-1 receptor (S1R). Int J Mol Sci 21(20):7708. https://doi.org/10.3390/ijms21207708 [DOI: 10.3390/ijms21207708]
  70. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791. https://doi.org/10.1002/jcc.21256 [DOI: 10.1002/jcc.21256]
  71. Singh UC, Kollman PA (1984) An approach to computing electrostatic charges for molecules. J Comput Chem 5(2):129–145. https://doi.org/10.1002/jcc.540050204 [DOI: 10.1002/jcc.540050204]
  72. Gasteiger J, Marsili M (1978) A new model for calculating atomic charges in molecules. Tetrahedron Lett 19(34):3181–3184. https://doi.org/10.1016/S0040-4039(01)94977-9 [DOI: 10.1016/S0040-4039(01)94977-9]
  73. Biovia DS (2016) Discovery studio. Dassault Systèmes BIOVIA
  74. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/j.softx.2015.06.001 [DOI: 10.1016/j.softx.2015.06.001]
  75. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24(16):1999–2012. https://doi.org/10.1002/jcc.10349 [DOI: 10.1002/jcc.10349]
  76. Sousa da Silva AW, Vranken WF (2012) ACPYPE - AnteChamber PYthon Parser interfacE. BMC Res Notes 5:367. https://doi.org/10.1186/1756-0500-5-367 [DOI: 10.1186/1756-0500-5-367]
  77. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174. https://doi.org/10.1002/jcc.20035 [DOI: 10.1002/jcc.20035]
  78. Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges AM1-BCC model: II Parameterization and validation. J Comput Chem 23(16):1623–1641. https://doi.org/10.1002/jcc.10128 [DOI: 10.1002/jcc.10128]
  79. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935. https://doi.org/10.1063/1.445869 [DOI: 10.1063/1.445869]
  80. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092. https://doi.org/10.1063/1.464397 [DOI: 10.1063/1.464397]
  81. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593. https://doi.org/10.1063/1.470117 [DOI: 10.1063/1.470117]
  82. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52(12):7182–7190. https://doi.org/10.1063/1.328693 [DOI: 10.1063/1.328693]
  83. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. The Journal of chemical physics 126 (1). https://doi.org/10.1063/1.2408420
  84. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38. https://doi.org/10.1016/0263-7855(96)00018-5 [DOI: 10.1016/0263-7855(96)00018-5]
  85. Srinivasan J, Cheatham TE, Cieplak P, Kollman PA, Case DA (1998) Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate− DNA helices. J Am Chem Soc 120(37):9401–9409. https://doi.org/10.1021/ja981844+ [DOI: 10.1021/ja981844+]
  86. Massova I, Kollman PA (2000) Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspect Drug Discovery Des 18:113–135. https://doi.org/10.1023/A:1008763014207 [DOI: 10.1023/A]
  87. Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 10(5):449–461. https://doi.org/10.1517/17460441.2015.1032936 [DOI: 10.1517/17460441.2015.1032936]
  88. Miller BR III, McGee TD Jr, Swails JM, Homeyer N, Gohlke H, Roitberg AE (2012) MMPBSA. py: an efficient program for end-state free energy calculations. J Chem Theory Comput 8(9):3314–3321 [DOI: 10.1021/ct300418h]
  89. Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA, Moreno E (2021) gmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACS. J Chem Theory Comput 17(10):6281–6291. https://doi.org/10.1021/acs.jctc.1c00645 [DOI: 10.1021/acs.jctc.1c00645]
  90. Myung Y, de Sá AG, Ascher DB (2024) Deep-PK: deep learning for small molecule pharmacokinetic and toxicity prediction. Nucleic Acids Res 52(W1):W469-75. https://doi.org/10.1093/nar/gkae254 [DOI: 10.1093/nar/gkae254]
  91. Hassan GS, Farag NA, Hegazy GH, Arafa RK (2008) Design and synthesis of novel benzopyran-2-one derivatives of expected antimicrobial activity through DNA gyrase-B inhibition. Archiv der Pharmazie 341(11):725–733. https://doi.org/10.1002/ardp.200700266 [DOI: 10.1002/ardp.200700266]
  92. Li W, Liu X, Muhammad S, Shi J, Meng Y, Wang J (2018) Computational investigation of tgf-β receptor inhibitors for treatment of idiopathic pulmonary fibrosis: field-based QSAR model and molecular dynamics simulation. Comput Biol Chem 76:139–150. https://doi.org/10.1016/j.compbiolchem.2018.07.002 [DOI: 10.1016/j.compbiolchem.2018.07.002]
  93. Jiang J-H, Deng P (2019) Discovery of new inhibitors of transforming growth factor-beta type 1 receptor by utilizing docking and structure-activity relationship analysis. Int J Mol Sci 20(17):4090. https://doi.org/10.3390/ijms20174090 [DOI: 10.3390/ijms20174090]
  94. Harikrishnan LS, Warrier J, Tebben AJ, Tonukunuru G, Madduri SR, Baligar V, Mannoori R, Seshadri B, Rahaman H, Arunachalam P (2018) Heterobicyclic inhibitors of transforming growth factor beta receptor I (TGFβRI). Bioorg Med Chem 26(5):1026–1034. https://doi.org/10.1016/j.bmc.2018.01.014 [DOI: 10.1016/j.bmc.2018.01.014]
  95. Antoniades H, Bravo M, Ra A, Galanopoulos T, Neville-Golden J, Maxwell M, Selman M (1990) Platelet-derived growth factor in idiopathic pulmonary fibrosis. J Clin Investig 86(4):1055–1064. https://doi.org/10.1172/JCI114808 [DOI: 10.1172/JCI114808]
  96. Effendi WI, Nagano T (2022) Connective tissue growth factor in idiopathic pulmonary fibrosis: breaking the bridge. Int J Mol Sci 23(11):6064. https://doi.org/10.3390/ijms23116064 [DOI: 10.3390/ijms23116064]
  97. Guzy R (2020) Fibroblast growth factor inhibitors in lung fibrosis: friends or foes? Am J RespirCell Mol Biol 63(3):273–274. https://doi.org/10.1165/rcmb.2020-0156ED [DOI: 10.1165/rcmb.2020-0156ED]
  98. Patel M, Post Y, Hill N, Sura A, Ye J, Fisher T, Suen N, Zhang M, Cheng L, Pribluda A (2024) A WNT mimetic with broad spectrum FZD-specificity decreases fibrosis and improves function in a pulmonary damage model. Respir Res 25(1):153. https://doi.org/10.1186/s12931-024-02786-2 [DOI: 10.1186/s12931-024-02786-2]
  99. Xia H, Diebold D, Nho R, Perlman D, Kleidon J, Kahm J, Avdulov S, Peterson M, Nerva J, Bitterman P (2008) Pathological integrin signaling enhances proliferation of primary lung fibroblasts from patients with idiopathic pulmonary fibrosis. J Exp Med 205(7):1659–1672. https://doi.org/10.1084/jem.20080001 [DOI: 10.1084/jem.20080001]

Grants

  1. 001/Conselho Nacional de Desenvolvimento Científico e Tecnológico
  2. 001/Conselho Nacional de Desenvolvimento Científico e Tecnológico
  3. 001/Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
  4. 001/Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
  5. FBA202012708/Çukurova Üniversitesi

MeSH Term

Coumarins
Molecular Dynamics Simulation
Flavonoids
Molecular Docking Simulation
Humans
Receptor, Transforming Growth Factor-beta Type I
Idiopathic Pulmonary Fibrosis
Protein Binding
Binding Sites

Chemicals

Coumarins
Flavonoids
Receptor, Transforming Growth Factor-beta Type I

Word Cloud

Created with Highcharts 10.0.0usingTGF-βR11flavonoidcoumarincompoundsscreeningmoleculardockingADMET2'pulmonaryfibrosisIPFtreatmentvirtualdynamicscommonsubstructure3'4'-trihydroxyflavonestructuralbindingMolecularIdiopathicdrug-likegrowthfactor-betareceptorstudypotentialnovelinhibitors1206derivativesapproaches200-nsMDsimulationstriplicatemaximumMCSanalysisdicoumarolhitcandidatesMM/PBSAfreeproperties2programtopthreehitsCONTEXT:chronicprogressivelungdiseasecharacterizedlimitedoptionssignificantsideeffectsexistingtherapieshighlightingurgentneedeffectivemoleculesTransformingkeyplayerpathogenesisrepresentscriticaltargettherapeuticinterventionplant-derivedexploredtotalinvestigatedseriescomputationalincludingfilteringabsorption-distribution-metabolism-excretion-toxicityprofilingemergedpromisingplant-basedexhibitingcomparablescoresMD-basedstabilitynegativeenergyrelativeco-crystallizedinhibitorsurpassingpirfenidoneparametersdemonstratingsuperiorpharmacologicallightfindingsconsideredrecommendedoptimizationpursuedvitroassaysvivoanimalstudiesMETHODS:initialdatasetfiltereddrug-likenessLipinski'sRuleFiveChemMaster-Proresulting161subjectedkinasedomainPDBID:6B8YAutoDockVina5identifyingcompounds-dicoumarol3'-dihydroxyflavoneunderwentexhaustiverefinementposesfollowedAMBER03forcefieldGROMACSSubsequentlyenergiescalculatedMechanics/Poisson-BoltzmannSurfaceAreamethodconducteddeterminesharedfeaturesamongpredictedDeep-PKdeeplearning-basedplatformFinallyligand-proteininteractionsvisualizedanalyzedrenderedChimeraXDiscoveryStudioVisualizerVisualDynamicsVMDInteractionsderivativetransforming:integratingidiopathicMaximumPlant-basedVirtual

Similar Articles

Cited By

No available data.