On the Meaning of De-Excitations in Time-Dependent Density Functional Theory Computations.

Felix Plasser
Author Information
  1. Felix Plasser: Department of Chemistry, Loughborough University, Loughborough, UK. ORCID

Abstract

De-excitations play a prominent role within the mathematical formalism of time-dependent density functional theory (TDDFT) and other excited-state response methods. However, their physical meaning remains largely unexplored and poorly understood. It is the purpose of this work to shed new light on this issue. The main thesis developed here is that de-excitations are not a peculiarity of TDDFT but that they are a more fundamental property of the underlying wave functions reflecting how electrons are excited between partially occupied orbitals. The paraquinodimethane (pQDM) molecule is chosen as a convenient model system whose open-shell character can be modulated via twisting of its methylene groups. Using the one-electron transition density matrix as a rigorous basis for our analysis, we highlight qualitative and quantitative parallels in the way that de-excitations are reflected in multireference wave function and TDDFT computations. As a physically observable consequence, we highlight a lowering of the transition dipole moment that derives from destructive interference between the excitation and de-excitation contributions. In summary, we hope that this work will shed new light on formal and practical aspects regarding the application of TDDFT to excited-state computations, especially of diradicaloid systems.

Keywords

References

  1. J Chem Phys. 2004 May 1;120(17):7849-60 [PMID: 15267700]
  2. Nano Lett. 2018 Nov 14;18(11):7298-7304 [PMID: 30346793]
  3. J Chem Phys. 2020 Feb 28;152(8):084108 [PMID: 32113349]
  4. Chem Rev. 2005 Nov;105(11):4009-37 [PMID: 16277369]
  5. Phys Chem Chem Phys. 2021 Dec 1;23(46):26135-26150 [PMID: 34792045]
  6. J Chem Phys. 2017 Feb 14;146(6):064106 [PMID: 28201909]
  7. J Chem Theory Comput. 2023 Apr 25;19(8):2340-2352 [PMID: 37022304]
  8. Angew Chem Int Ed Engl. 2015 Oct 12;54(42):12308-13 [PMID: 25882895]
  9. Angew Chem Int Ed Engl. 2023 Apr 3;62(15):e202300772 [PMID: 36781392]
  10. J Phys Chem A. 2023 Nov 23;127(46):9842-9852 [PMID: 37851528]
  11. J Am Chem Soc. 2023 Sep 20;145(37):20229-20241 [PMID: 37671971]
  12. Chem Sci. 2023 Mar 15;14(15):4012-4026 [PMID: 37063798]
  13. J Comput Chem. 2015 Aug 5;36(21):1609-20 [PMID: 26119286]
  14. J Chem Phys. 2015 Jun 28;142(24):244103 [PMID: 26133406]
  15. J Chem Theory Comput. 2022 Aug 9;18(8):4814-4825 [PMID: 35876618]
  16. Annu Rev Phys Chem. 2012;63:287-323 [PMID: 22242728]
  17. J Phys Chem A. 2014 Dec 26;118(51):11943-55 [PMID: 25068677]
  18. Phys Chem Chem Phys. 2016 Aug 24;18(34):24015-23 [PMID: 27523386]
  19. Angew Chem Int Ed Engl. 2013 Feb 25;52(9):2581-4 [PMID: 23355507]
  20. J Chem Theory Comput. 2017 Nov 14;13(11):5343-5353 [PMID: 28972759]
  21. Faraday Discuss. 2024 Nov 6;254(0):107-129 [PMID: 39082973]
  22. J Chem Phys. 2021 Aug 28;155(8):084801 [PMID: 34470363]
  23. J Chem Phys. 2015 Nov 7;143(17):171101 [PMID: 26547149]
  24. Phys Chem Chem Phys. 2005 Sep 21;7(18):3297-305 [PMID: 16240044]
  25. J Phys Chem Lett. 2017 Mar 16;8(6):1205-1210 [PMID: 28230997]
  26. Acc Chem Res. 2014 Aug 19;47(8):2582-91 [PMID: 25068503]
  27. Phys Rev Lett. 1996 Oct 28;77(18):3865-3868 [PMID: 10062328]
  28. J Chem Theory Comput. 2014 Aug 12;10(8):3074-84 [PMID: 26588278]
  29. Chemphyschem. 2023 Nov 2;24(21):e202200906 [PMID: 37545345]
  30. J Am Chem Soc. 2024 Mar 13;146(10):6763-6772 [PMID: 38416700]
  31. J Chem Phys. 2020 Dec 21;153(23):234101 [PMID: 33353322]
  32. J Chem Phys. 2014 Jul 14;141(2):024106 [PMID: 25027998]
  33. J Phys Chem A. 2016 Mar 10;120(9):1625-36 [PMID: 26859789]
  34. J Chem Phys. 2015 Apr 14;142(14):144104 [PMID: 25877559]
  35. Phys Chem Chem Phys. 2020 Mar 18;22(11):6058-6080 [PMID: 32154539]
  36. Sci Adv. 2024 Jul 26;10(30):eado3476 [PMID: 39047089]

Word Cloud

Created with Highcharts 10.0.0TDDFTdensityfunctionaltheoryexcited-stateworkshednewlightde-excitationswaveelectronsexcitedtransitionhighlightcomputationsDe-excitationsplayprominentrolewithinmathematicalformalismtime-dependentresponsemethodsHoweverphysicalmeaningremainslargelyunexploredpoorlyunderstoodpurposeissuemainthesisdevelopedpeculiarityfundamentalpropertyunderlyingfunctionsreflectingpartiallyoccupiedorbitalsparaquinodimethanepQDMmoleculechosenconvenientmodelsystemwhoseopen-shellcharactercanmodulatedviatwistingmethylenegroupsUsingone-electronmatrixrigorousbasisanalysisqualitativequantitativeparallelswayreflectedmultireferencefunctionphysicallyobservableconsequenceloweringdipolemomentderivesdestructiveinterferenceexcitationde-excitationcontributionssummaryhopewillformalpracticalaspectsregardingapplicationespeciallydiradicaloidsystemsMeaningDe-ExcitationsTime-DependentDensityFunctionalTheoryComputationsstatesquantumchemistrytime���dependentunpaired

Similar Articles

Cited By

No available data.