Approximate Solutions of a General Stochastic Velocity-Jump Model Subject to Discrete-Time Noisy Observations.

Arianna Ceccarelli, Alexander P Browning, Ruth E Baker
Author Information
  1. Arianna Ceccarelli: Mathematical Institute, University of Oxford, Woodstock Road, Oxford, OX2 6GG, UK. arianna.ceccarelli@maths.ox.ac.uk. ORCID
  2. Alexander P Browning: Mathematical Institute, University of Oxford, Woodstock Road, Oxford, OX2 6GG, UK. ORCID
  3. Ruth E Baker: Mathematical Institute, University of Oxford, Woodstock Road, Oxford, OX2 6GG, UK. ORCID

Abstract

Advances in experimental techniques allow the collection of high-resolution spatio-temporal data that track individual motile entities over time. These tracking data motivate the use of mathematical models to characterise the motion observed. In this paper, we aim to describe the solutions of velocity-jump models for single-agent motion in one spatial dimension, characterised by successive Markovian transitions within a finite network of n states, each with a specified velocity and a fixed rate of switching to every other state. In particular, we focus on obtaining the solutions of the model subject to noisy, discrete-time, observations, with no direct access to the agent state. The lack of direct observation of the hidden state makes the problem of finding the exact distributions generally intractable. Therefore, we derive a series of approximations for the data distributions. We verify the accuracy of these approximations by comparing them to the empirical distributions generated through simulations of four example model structures. These comparisons confirm that the approximations are accurate given sufficiently infrequent state switching relative to the imaging frequency. The approximate distributions computed can be used to obtain fast forwards predictions, to give guidelines on experimental design, and as likelihoods for inference and model selection.

Keywords

References

  1. Sci Rep. 2023 Sep 4;13(1):14581 [PMID: 37666895]
  2. Bull Math Biol. 2012 May;74(5):1066-97 [PMID: 21997362]
  3. Phys Rev E. 2020 Sep;102(3-1):032410 [PMID: 33075927]
  4. Bull Math Biol. 2024 Jan 6;86(2):15 [PMID: 38183510]
  5. J Theor Biol. 2020 Jul 7;496:110255 [PMID: 32223995]
  6. SIAM J Appl Dyn Syst. 2018;17(4):2855-2881 [PMID: 34135697]
  7. Nat Immunol. 2018 Nov;19(11):1236-1247 [PMID: 30323345]
  8. Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Dec;84(6 Pt 1):061920 [PMID: 22304129]
  9. Phys Biol. 2015 Sep 25;12(6):066001 [PMID: 26403334]
  10. Bull Math Biol. 2024 May 13;86(6):74 [PMID: 38740619]
  11. Phys Rev E. 2018 May;97(5-1):052408 [PMID: 29906834]
  12. PLoS Comput Biol. 2013 Oct;9(10):e1003276 [PMID: 24204227]
  13. J Theor Biol. 2005 Apr 21;233(4):573-88 [PMID: 15748917]
  14. J Theor Biol. 2022 Sep 21;549:111201 [PMID: 35752285]
  15. J Math Biol. 1988;26(3):263-98 [PMID: 3411255]
  16. Nat Struct Mol Biol. 2011 Aug 14;18(9):1020-7 [PMID: 21841789]
  17. Biophys J. 2019 Dec 3;117(11):2154-2165 [PMID: 31708163]
  18. PLoS Comput Biol. 2018 Jun 25;14(6):e1006235 [PMID: 29939995]
  19. Biophys J. 2017 Apr 25;112(8):1714-1725 [PMID: 28445762]
  20. Oecologia. 1983 Feb;56(2-3):234-238 [PMID: 28310199]
  21. Nat Struct Mol Biol. 2024 Mar;31(3):476-488 [PMID: 38297086]
  22. Nat Commun. 2019 Apr 23;10(1):1877 [PMID: 31015402]
  23. Oecologia. 2000 May;123(3):364-374 [PMID: 28308591]
  24. Methods Enzymol. 2012;504:183-200 [PMID: 22264535]
  25. Nature. 1972 Oct 27;239(5374):500-4 [PMID: 4563019]
  26. J Theor Biol. 2011 Jan 21;269(1):181-94 [PMID: 20951143]
  27. Bull Math Biol. 2015 Jul;77(7):1213-36 [PMID: 26060098]
  28. J R Soc Interface. 2014 Aug 6;11(97):20140320 [PMID: 24872500]
  29. PLoS Comput Biol. 2010 Nov 04;6(11):e1000980 [PMID: 21079666]
  30. Cell Motil. 1985;5(6):507-27 [PMID: 2416456]
  31. J R Soc Interface. 2013 Jun 05;10(85):20130273 [PMID: 23740484]

Grants

  1. MP-SIP-00001828/Simons Foundation
  2. MP-SIP-00001828/Engineering and Physical Sciences Research Council

MeSH Term

Mathematical Concepts
Stochastic Processes
Models, Biological
Computer Simulation
Markov Chains
Movement

Word Cloud

Created with Highcharts 10.0.0datastatemodeldistributionsapproximationsexperimentaltrackingmodelsmotionsolutionsvelocity-jumpswitchingdirectApproximateAdvancestechniquesallowcollectionhigh-resolutionspatio-temporaltrackindividualmotileentitiestimemotivateusemathematicalcharacteriseobservedpaperaimdescribesingle-agentonespatialdimensioncharacterisedsuccessiveMarkoviantransitionswithinfinitenetworknstatesspecifiedvelocityfixedrateeveryparticularfocusobtainingsubjectnoisydiscrete-timeobservationsaccessagentlackobservationhiddenmakesproblemfindingexactgenerallyintractableThereforederiveseriesverifyaccuracycomparingempiricalgeneratedsimulationsfourexamplestructurescomparisonsconfirmaccurategivensufficientlyinfrequentrelativeimagingfrequencyapproximatecomputedcanusedobtainfastforwardspredictionsgiveguidelinesdesignlikelihoodsinferenceselectionSolutionsGeneralStochasticVelocity-JumpModelSubjectDiscrete-TimeNoisyObservationslikelihoodContinuous-timeMarkovchainGeneralisedProbabilitydensityfunctionSingle-agent

Similar Articles

Cited By