Scaling COVID-19 rates with population size in the United States.

Austin R Cruz, Brian J Enquist, Joseph R Burger
Author Information
  1. Austin R Cruz: Department of Ecology & Evolutionary Biology, The University of Arizona, Tucson, AZ, USA. ORCID
  2. Brian J Enquist: Department of Ecology & Evolutionary Biology, The University of Arizona, Tucson, AZ, USA. ORCID
  3. Joseph R Burger: University of Kentucky, Lexington, KY, USA. ORCID

Abstract

Using county-level data from the United States, we assessed allometric scaling relationships of coronavirus disease (COVID-19) cases, deaths and age structure within and across the first four major waves of the pandemic (wild-type, alpha, delta, omicron). Results generally indicate that the burden of cases disproportionately impacted larger-sized counties, while the burden of deaths disproportionately impacted smaller counties. This may be partially due to multiple interacting social mechanisms, including a higher proportion of older adults who live in smaller counties. Moreover, these likely social mechanisms interacting with vaccinations and virus waves created a dynamic pattern whereby the rate and magnitude of infections and deaths were population- and time-dependent. Our results offer a novel perspective on the scaling dynamics of infectious diseases, highlighting how both the rate and magnitude of COVID-19 cases and deaths scale differently across counties. Population size and age structure are key factors in predicting disease burden. Our findings have practical implications, suggesting that scaling-informed public health policies could more effectively allocate resources and interventions to mitigate the impact of future epidemics across heterogeneous populations.

Keywords

References

  1. PLoS One. 2014 Oct 23;9(10):e111015 [PMID: 25340796]
  2. Trends Ecol Evol. 2021 Feb;36(2):123-131 [PMID: 33168154]
  3. Sci Rep. 2025 Jan 2;15(1):498 [PMID: 39748086]
  4. Proc Natl Acad Sci U S A. 2007 Apr 24;104(17):7301-6 [PMID: 17438298]
  5. Infect Dis Model. 2022 Mar;7(1):122-133 [PMID: 34926874]
  6. J Rural Health. 2022 Sep;38(4):916-922 [PMID: 34555222]
  7. Cell Rep Med. 2022 Mar 15;3(3):100564 [PMID: 35474739]
  8. Sci Rep. 2017 Mar 02;7:43869 [PMID: 28252010]
  9. Ann Intern Med. 2020 Oct 6;173(7):587-589 [PMID: 32491920]
  10. Commun Biol. 2021 Jan 5;4(1):60 [PMID: 33402722]
  11. PLoS One. 2020 Sep 23;15(9):e0239699 [PMID: 32966344]
  12. Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30104-30106 [PMID: 33172993]
  13. Transp Res Interdiscip Perspect. 2020 Nov;8:100244 [PMID: 34173479]
  14. PLoS Comput Biol. 2008 Sep 12;4(9):e1000171 [PMID: 18787686]
  15. CMAJ. 2021 Oct 25;193(42):E1619-E1625 [PMID: 34610919]
  16. Nature. 2023 Jan;613(7942):130-137 [PMID: 36517599]
  17. J R Soc Interface. 2014 Sep 6;11(98):20130789 [PMID: 24990287]
  18. Science. 2021 Mar 26;371(6536): [PMID: 33531384]
  19. R Soc Open Sci. 2016 Jul 13;3(7):150649 [PMID: 27493764]
  20. PLoS One. 2021 Apr 21;16(4):e0249271 [PMID: 33882054]
  21. Science. 2021 May 28;372(6545): [PMID: 33906968]
  22. Lancet Infect Dis. 2022 Sep;22(9):1293-1302 [PMID: 35753318]
  23. Sci Rep. 2020 Oct 8;10(1):16863 [PMID: 33033349]
  24. Nat Med. 2020 Aug;26(8):1212-1217 [PMID: 32546823]
  25. Science. 2013 Jun 21;340(6139):1438-41 [PMID: 23788793]
  26. Nature. 2001 Dec 13;414(6865):716-23 [PMID: 11742391]
  27. Sci Adv. 2023 Jun 23;9(25):eadf9742 [PMID: 37352359]
  28. PLoS One. 2022 Mar 31;17(3):e0261725 [PMID: 35358202]
  29. MMWR Morb Mortal Wkly Rep. 2021 Jun 11;70(23):846-850 [PMID: 34111060]
  30. Biology (Basel). 2023 Sep 21;12(9): [PMID: 37759666]
  31. Lancet Infect Dis. 2022 Dec;22(12):e370-e376 [PMID: 36057267]
  32. Soc Sci Q. 2021 Sep;102(5):2368-2382 [PMID: 34908612]
  33. Proc Biol Sci. 2023 Feb 8;290(1992):20221986 [PMID: 36722077]

MeSH Term

COVID-19
Humans
United States
SARS-CoV-2
Population Density
Aged
Pandemics
Male
Female
Adult
Middle Aged

Word Cloud

Created with Highcharts 10.0.0scalingCOVID-19deathscountiescasesacrossburdenUnitedStatesdiseaseagestructurewavesdisproportionatelyimpactedsmallerinteractingsocialmechanismsratemagnitudesizeUsingcounty-leveldataassessedallometricrelationshipscoronaviruswithinfirstfourmajorpandemicwild-typealphadeltaomicronResultsgenerallyindicatelarger-sizedmaypartiallyduemultipleincludinghigherproportionolderadultsliveMoreoverlikelyvaccinationsviruscreateddynamicpatternwherebyinfectionspopulation-time-dependentresultsoffernovelperspectivedynamicsinfectiousdiseaseshighlightingscaledifferentlyPopulationkeyfactorspredictingfindingspracticalimplicationssuggestingscaling-informedpublichealthpolicieseffectivelyallocateresourcesinterventionsmitigateimpactfutureepidemicsheterogeneouspopulationsScalingratespopulationallometryepidemiologylaws

Similar Articles

Cited By