Flipons enable genomes to learn by intermediating the exchange of energy for information.

Alan Herbert
Author Information
  1. Alan Herbert: Discovery, InsideOutBio Inc, Charlestown, MA, USA. ORCID

Abstract

Recent findings have confirmed the long-held belief that alternative DNA conformations encoded by genetic elements called flipons have important biological roles. Many of these alternative structures are formed by sequences originally spread throughout the human genome by endogenous retroelements (ERE) that captured 50% of the territory before being disarmed. Only 2.6% of the remaining DNA codes for proteins. Other organisms have instead streamlined their genomes by eliminating invasive retroelements and other repeat elements. The question arises, why retain any ERE at all? A new synthesis suggests that flipons enable genomes to learn and programme the context-specific readout of information by altering the transcripts produced. The exchange of energy for information is mediated through changes in DNA topology. Here I provide a formulation for how genomes learn and describe the underlying p-bit algorithm through which flipons are tuned. The framework suggests new strategies for the therapeutic reprogramming of cells.

Keywords

References

  1. Methods. 2009 Mar;47(3):159-67 [PMID: 18848994]
  2. Nat Cell Biol. 2022 Jul;24(7):1141-1153 [PMID: 35787683]
  3. J Biosci. 2007 Jun;32(4):657-61 [PMID: 17762138]
  4. Genes Brain Behav. 2018 Mar;17(3):e12407 [PMID: 28782190]
  5. J Mol Biol. 1997 Apr 11;267(4):794-806 [PMID: 9135112]
  6. EMBO Rep. 2023 May 4;24(5):e55835 [PMID: 36975179]
  7. Nature. 2022 Jul;607(7920):784-789 [PMID: 35859175]
  8. ACS Cent Sci. 2015 Aug 26;1(5):226-233 [PMID: 26405692]
  9. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6342-6 [PMID: 3462699]
  10. Biochem J. 1974 Aug;141(2):537-43 [PMID: 4375981]
  11. Semin Cell Dev Biol. 2020 Jan;97:123-130 [PMID: 31299279]
  12. Sci Rep. 2017 Sep 8;7(1):10994 [PMID: 28887489]
  13. Mol Cell Biol. 2006 Nov;26(21):7942-52 [PMID: 16923960]
  14. Nat Struct Mol Biol. 2008 Feb;15(2):146-54 [PMID: 18193062]
  15. EMBO J. 1987 May;6(5):1513-22 [PMID: 3608986]
  16. Arthritis Rheum. 1990 Mar;33(3):356-65 [PMID: 2317222]
  17. Cell. 2006 Aug 25;126(4):663-76 [PMID: 16904174]
  18. Nature. 2020 Aug;584(7820):244-251 [PMID: 32728217]
  19. Int J Mol Sci. 2023 Mar 03;24(5): [PMID: 36902315]
  20. NAR Genom Bioinform. 2025 Mar 04;7(1):lqaf012 [PMID: 40041207]
  21. Biochem Soc Trans. 2017 Oct 15;45(5):1173-1182 [PMID: 28939694]
  22. Genome Med. 2024 Jun 17;16(1):82 [PMID: 38886809]
  23. Nature. 2006 May 25;441(7092):469-74 [PMID: 16724059]
  24. Cell Rep. 2016 May 31;15(9):2038-49 [PMID: 27210764]
  25. Biol Lett. 2025 Jan;21(1):20240635 [PMID: 39837490]
  26. Trends Chem. 2020 Feb;2(2):123-136 [PMID: 32923997]
  27. Nat Struct Mol Biol. 2004 Nov;11(11):1092-100 [PMID: 15502847]
  28. Biochem Biophys Res Commun. 2019 Jan 22;508(4):1215-1220 [PMID: 30558789]
  29. Mol Cell. 2023 Oct 19;83(20):3622-3641 [PMID: 37863029]
  30. Nat Rev Mol Cell Biol. 2023 Feb;24(2):123-141 [PMID: 36104626]
  31. Trends Genet. 2019 Dec;35(12):887-890 [PMID: 31668857]
  32. R Soc Open Sci. 2024 Jun 19;11(6):240080 [PMID: 39092141]
  33. Nat Commun. 2020 Feb 24;11(1):1018 [PMID: 32094342]
  34. Cell Syst. 2017 Mar 22;4(3):344-356.e7 [PMID: 28237796]
  35. Wiley Interdiscip Rev RNA. 2021 Jan;12(1):e1631 [PMID: 33073477]
  36. Proc Natl Acad Sci U S A. 2023 Jun 6;120(23):e2220528120 [PMID: 37252986]
  37. Nature. 1988 Jul 28;334(6180):364-6 [PMID: 3393228]
  38. J Biol Chem. 1990 Oct 25;265(30):18538-45 [PMID: 2211718]
  39. Nat Commun. 2018 Sep 28;9(1):3989 [PMID: 30266901]
  40. PLoS Genet. 2021 May 13;17(5):e1009513 [PMID: 33983939]
  41. Nature. 2022 Jul;607(7920):769-775 [PMID: 35859177]
  42. Nature. 1959 Jun 13;183(4676):1654-5 [PMID: 13666847]
  43. J Mol Biol. 2014 Jul 15;426(14):2594-604 [PMID: 24813121]
  44. Cell Host Microbe. 2021 Aug 11;29(8):1266-1276.e5 [PMID: 34192517]
  45. PLoS Comput Biol. 2011 Jan 20;7(1):e1001051 [PMID: 21283778]
  46. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4275-9 [PMID: 172901]
  47. J Mol Biol. 1961 Jun;3:318-56 [PMID: 13718526]
  48. Genome Res. 2021 Aug;31(8):1395-1408 [PMID: 34131006]
  49. Nucleic Acids Res. 2017 Jan 9;45(1):206-214 [PMID: 28069994]
  50. Nucleic Acids Res. 2024 Jan 5;52(D1):D72-D80 [PMID: 37904589]
  51. Commun Biol. 2019 Jan 7;2:7 [PMID: 30729177]
  52. Nat Commun. 2015 Jul 24;6:7743 [PMID: 26205790]
  53. RNA. 2021 Apr;27(4):390-402 [PMID: 33483368]
  54. Chem Rev. 2013 May 8;113(5):3044-83 [PMID: 23391174]
  55. Nat Genet. 2016 Oct;48(10):1267-72 [PMID: 27618450]
  56. Nat Struct Mol Biol. 2013 Mar;20(3):396-403 [PMID: 23416947]
  57. Dev Cell. 2004 Oct;7(4):597-606 [PMID: 15469847]
  58. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6206-10 [PMID: 6578505]
  59. Cell Rep. 2019 Mar 12;26(11):2904-2915.e4 [PMID: 30865882]
  60. Nature. 2025 Jan;637(8046):557-564 [PMID: 39815096]
  61. J Biol Chem. 2023 Sep;299(9):105140 [PMID: 37544644]
  62. Cell Genom. 2022 Apr 13;2(4): [PMID: 35573091]
  63. Cell. 2020 Jun 25;181(7):1582-1595.e18 [PMID: 32492408]
  64. Nucleic Acids Res. 2013 Jan;41(Database issue):D94-D100 [PMID: 23125372]
  65. Nature. 2012 Sep 6;489(7414):75-82 [PMID: 22955617]
  66. Nat Rev Mol Cell Biol. 2020 Aug;21(8):459-474 [PMID: 32313204]
  67. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1619-23 [PMID: 6262820]
  68. Genes Dev. 2018 Jun 1;32(11-12):836-848 [PMID: 29907651]
  69. Nucleic Acids Res. 2010 Aug;38(15):5141-51 [PMID: 20385573]
  70. Nat Commun. 2021 Feb 4;12(1):793 [PMID: 33542240]
  71. Nature. 1993 Jun 10;363(6429):561-5 [PMID: 8389423]
  72. R Soc Open Sci. 2020 Jun 3;7(6):200222 [PMID: 32742689]
  73. Nat Struct Mol Biol. 2018 Oct;25(10):951-957 [PMID: 30275516]
  74. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8320-4 [PMID: 3866225]
  75. ACS Chem Biol. 2019 Feb 15;14(2):245-255 [PMID: 30592616]
  76. Nucleic Acids Res. 2019 Mar 18;47(5):2306-2321 [PMID: 30605520]
  77. Nucleic Acids Res. 2018 Sep 19;46(16):8038-8056 [PMID: 30124962]
  78. Cell. 1989 Jan 13;56(1):9-11 [PMID: 2910498]
  79. J Cell Biol. 1989 Mar;108(3):755-64 [PMID: 2921282]
  80. Proc Natl Acad Sci U S A. 2019 Mar 26;116(13):6130-6139 [PMID: 30867287]
  81. Nat Struct Mol Biol. 2023 Apr;30(4):417-424 [PMID: 36914796]
  82. DNA Repair (Amst). 2023 Oct;130:103552 [PMID: 37572578]
  83. Nature. 1979 Dec 13;282(5740):680-6 [PMID: 514347]
  84. NAR Mol Med. 2024 Dec 05;1(4):ugae024 [PMID: 39723156]
  85. Cell Rep. 2023 Jul 25;42(7):112733 [PMID: 37421629]
  86. Curr Biol. 2016 May 23;26(10):1274-84 [PMID: 27185558]
  87. Nature. 1987 Dec 3-9;330(6147):495-7 [PMID: 2825028]
  88. Genome Biol. 2021 Apr 23;22(1):117 [PMID: 33892767]
  89. Science. 1977 Jun 10;196(4295):1161-6 [PMID: 860134]
  90. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8421-6 [PMID: 9237992]
  91. Proc Natl Acad Sci U S A. 2024 Feb 13;121(7):e2320240121 [PMID: 38315865]
  92. Biochim Biophys Acta. 2013 Aug;1833(8):1894-903 [PMID: 23557785]
  93. Sci Adv. 2021 Jul 28;7(31): [PMID: 34321199]
  94. Curr Opin Struct Biol. 2024 Aug;87:102846 [PMID: 38848656]
  95. Nature. 2012 Apr 11;485(7398):376-80 [PMID: 22495300]
  96. Curr Opin Struct Biol. 2020 Dec;65:110-118 [PMID: 32688260]
  97. Genome Biol. 2008;9(2):210 [PMID: 18304383]
  98. Genes Immun. 2024 Aug;25(4):265-276 [PMID: 38811682]
  99. Mob DNA. 2018 Jan 4;9:2 [PMID: 29308093]
  100. Curr Opin Virol. 2021 Dec;51:134-140 [PMID: 34688984]
  101. Cell. 2017 Jul 27;170(3):564-576.e16 [PMID: 28753430]
  102. Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12759-64 [PMID: 16126896]
  103. EMBO J. 1991 Aug;10(8):2279-89 [PMID: 1676674]
  104. EMBO J. 1992 Dec;11(12):4653-63 [PMID: 1330542]
  105. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7024-7 [PMID: 2823250]
  106. Nat Rev Mol Cell Biol. 2019 Jul;20(7):406-420 [PMID: 30992545]
  107. Eur J Hum Genet. 2020 Jan;28(1):114-117 [PMID: 31320745]
  108. Trends Genet. 2020 Oct;36(10):739-750 [PMID: 32690316]
  109. Mol Cell. 2020 May 7;78(3):554-565.e7 [PMID: 32213324]
  110. Cell Biosci. 2012 Jan 20;2:3 [PMID: 22264354]
  111. Nature. 2008 May 22;453(7194):539-43 [PMID: 18404146]
  112. Nature. 1989 Dec 14;342(6251):767-72 [PMID: 2574828]
  113. Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):11862-7 [PMID: 16882718]
  114. Life Sci Alliance. 2023 May 10;6(7): [PMID: 37164635]
  115. Nat Commun. 2024 Dec 20;15(1):10711 [PMID: 39706840]
  116. Nature. 2022 Jun;606(7914):594-602 [PMID: 35614224]
  117. Molecules. 2023 Jan 14;28(2): [PMID: 36677900]
  118. Nucleic Acids Res. 2025 Jan 6;53(D1):D129-D137 [PMID: 39540421]
  119. Curr Opin Cell Biol. 2025 Feb;92:102448 [PMID: 39672089]
  120. Biochemistry. 1986 Jun 17;25(12):3648-55 [PMID: 3718951]
  121. Int J Mol Sci. 2023 Nov 18;24(22): [PMID: 38003672]
  122. Sci Rep. 2024 Aug 1;14(1):17786 [PMID: 39090226]
  123. Nature. 2022 Jul;607(7920):776-783 [PMID: 35859176]
  124. Bioessays. 2022 Dec;44(12):e2200166 [PMID: 36317523]
  125. Int J Mol Sci. 2024 Sep 25;25(19): [PMID: 39408629]
  126. Cell. 2016 Jul 28;166(3):740-754 [PMID: 27397505]
  127. Nucleus. 2014 May-Jun;5(3):211-8 [PMID: 24819949]
  128. Mol Cell. 2020 May 7;78(3):539-553.e8 [PMID: 32213323]

MeSH Term

Humans
Genome, Human
DNA
Retroelements
Models, Genetic
Algorithms
Nucleic Acid Conformation
Animals
Genome

Chemicals

DNA
Retroelements

Word Cloud

Created with Highcharts 10.0.0DNAfliponsgenomeslearninformationalternativeelementsgenomeretroelementsEREnewsuggestsenableexchangeenergytopologyRecentfindingsconfirmedlong-heldbeliefconformationsencodedgeneticcalledimportantbiologicalrolesManystructuresformedsequencesoriginallyspreadthroughouthumanendogenouscaptured50%territorydisarmed26%remainingcodesproteinsorganismsinsteadstreamlinedeliminatinginvasiverepeatquestionarisesretainall?synthesisprogrammecontext-specificreadoutalteringtranscriptsproducedmediatedchangesprovideformulationdescribeunderlyingp-bitalgorithmtunedframeworkstrategiestherapeuticreprogrammingcellsFliponsintermediatingentropyevolutionlearning

Similar Articles

Cited By