Growth and Assemblage Dynamics of Temperate Forest Tree Species Match Physiological Resilience to Changes in Atmospheric Chemistry.

Filip Oulehle, Pavel ��amonil, Otmar Urban, Josef ����slavsk��, Alexander A��, Ivana Va������kov��, Jakub Ka��par, Pavel Huben��, Rudolf Br��zdil, Miroslav Trnka
Author Information
  1. Filip Oulehle: Czech Geological Survey, Prague, Czech Republic. ORCID
  2. Pavel ��amonil: Department of Forest Ecology, The Silva Tarouca Research Institute, Brno, Czech Republic. ORCID
  3. Otmar Urban: Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic. ORCID
  4. Josef ����slavsk��: Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic.
  5. Alexander A��: Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic.
  6. Ivana Va������kov��: Department of Forest Ecology, The Silva Tarouca Research Institute, Brno, Czech Republic.
  7. Jakub Ka��par: Department of Forest Ecology, The Silva Tarouca Research Institute, Brno, Czech Republic. ORCID
  8. Pavel Huben��: ��umava National Park, Vimperk, Czech Republic.
  9. Rudolf Br��zdil: Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic.
  10. Miroslav Trnka: Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic.

Abstract

Human-induced environmental changes are altering forest productivity and species composition, significantly impacting tree physiology, growth, water uptake, and nutrient acquisition. Investigating the intricate interplay between plant physiology and environmental shifts, we analyzed tree-ring isotopes (��C, ��O, and ��N) to track long-term trends in intrinsic water-use efficiency (iWUE) and nitrogen availability for European beech, Norway spruce, and silver fir in a unique old-growth temperate mountain forest since 1501���ce. Our findings reveal that Norway spruce, a dominant species, exhibited iWUE saturation, exacerbated by acidic precipitation, resulting in growth declines during periods of high acidic air pollution and increased drought frequency. In contrast, deep-rooted, deciduous European beech demonstrated physiological resilience to acid deposition, benefiting from lower dry deposition of precipitation acidity and thriving under conditions of increased nitrogen deposition and elevated air temperatures, thereby sustaining stem growth regardless of potential climatic limitations. Silver fir showed the most dynamic response to acidic air pollution, with contemporary adaptations in leaf gas exchange allowing accelerated stem growth under cleaner air conditions. These different species responses underscore shifts in species competition, with European beech gaining dominance as Norway spruce and silver fir decline. Furthermore, the influence of ontogeny is evident, as tree-rings exhibited lower initial iWUE values and higher ��N, reflecting changes in nitrogen uptake dynamics and the ecological role of tree age. Our study integrates tree-growth dynamics with physiological and nutrient availability trends, revealing the pivotal role of atmospheric chemistry changes in shaping the competitive dynamics and long-term growth trajectories of dominant tree species in temperate forests.

Keywords

References

  1. Plant Cell Environ. 2023 Sep;46(9):2606-2627 [PMID: 37283560]
  2. Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21713-6 [PMID: 19995974]
  3. Proc Natl Acad Sci U S A. 2021 Feb 16;118(7): [PMID: 33558233]
  4. J Environ Qual. 2004 Jan-Feb;33(1):13-26 [PMID: 14964354]
  5. Ecol Evol. 2021 Apr 02;11(10):5424-5440 [PMID: 34026018]
  6. Oecologia. 1985 Mar;65(4):536-542 [PMID: 28311862]
  7. New Phytol. 2009;183(4):980-992 [PMID: 19563444]
  8. Nat Commun. 2021 Feb 23;12(1):1081 [PMID: 33623030]
  9. Science. 2022 May 13;376(6594):758-761 [PMID: 35549405]
  10. Nat Commun. 2021 Aug 31;12(1):5194 [PMID: 34465788]
  11. Proc Natl Acad Sci U S A. 2021 Jun 29;118(26): [PMID: 34162705]
  12. Commun Earth Environ. 2023 Feb 14;4(35):1-8 [PMID: 37325084]
  13. Sci Total Environ. 2024 Nov 15;951:175858 [PMID: 39209174]
  14. Sci Adv. 2021 Jan 13;7(3): [PMID: 33523891]
  15. Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):15319-24 [PMID: 24003125]
  16. Sci Rep. 2023 Sep 16;13(1):15373 [PMID: 37716997]
  17. Proc Natl Acad Sci U S A. 2019 Aug 20;116(34):16909-16914 [PMID: 31383758]
  18. Nat Commun. 2014 Sep 12;5:4967 [PMID: 25216297]
  19. Environ Sci Technol. 2007 Aug 15;41(16):5778-82 [PMID: 17874786]
  20. Nat Plants. 2023 Nov;9(11):1795-1809 [PMID: 37872262]
  21. New Phytol. 2015 Mar;205(4):1525-1536 [PMID: 25494880]
  22. Sci Data. 2021 Aug 17;8(1):220 [PMID: 34404811]
  23. Oecologia. 2000 Sep;124(4):553-560 [PMID: 28308394]
  24. Nature. 2004 Apr 22;428(6985):851-4 [PMID: 15103376]
  25. Plant Cell Environ. 2014 Jul;37(7):1494-8 [PMID: 24716900]
  26. Nat Commun. 2017 Aug 18;8(1):288 [PMID: 28819277]
  27. Sci Total Environ. 2022 Sep 10;838(Pt 3):156483 [PMID: 35675888]
  28. Environ Pollut. 2010 Jun;158(6):2007-13 [PMID: 20022153]
  29. Nat Commun. 2022 Sep 19;13(1):5490 [PMID: 36123337]
  30. Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):1470-4 [PMID: 25605898]
  31. Sci Total Environ. 2023 Dec 10;903:166233 [PMID: 37572919]
  32. Tree Physiol. 2017 Jul 1;37(7):938-949 [PMID: 28595309]
  33. Curr Opin Plant Biol. 2015 Jun;25:107-14 [PMID: 26037389]
  34. New Phytol. 2022 Nov;236(3):803-808 [PMID: 36200332]
  35. Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3611-5 [PMID: 20133710]
  36. Sci Total Environ. 2023 Jan 20;857(Pt 3):159580 [PMID: 36280071]
  37. Nat Commun. 2018 Nov 26;9(1):4978 [PMID: 30478255]
  38. Plant Cell Environ. 2013 Nov;36(11):1961-80 [PMID: 23527762]
  39. Science. 2021 May 21;372(6544):860-864 [PMID: 34016781]
  40. Plant Cell Environ. 2018 Dec;41(12):2899-2914 [PMID: 30107635]
  41. Glob Chang Biol. 2019 Jul;25(7):2242-2257 [PMID: 30933410]
  42. New Phytol. 2021 Mar;229(5):2413-2445 [PMID: 32789857]
  43. Front Plant Sci. 2018 Jan 17;8:2268 [PMID: 29387075]
  44. Environ Pollut. 2014 Feb;185:281-94 [PMID: 24316066]
  45. New Phytol. 2011 Jan;189(2):515-25 [PMID: 20880225]
  46. New Phytol. 2024 Jul;243(2):662-673 [PMID: 38769735]
  47. Science. 2020 May 29;368(6494): [PMID: 32467364]
  48. Glob Chang Biol. 2023 Jun;29(12):3449-3462 [PMID: 36897273]
  49. Glob Chang Biol. 2018 Sep;24(9):3938-3953 [PMID: 29781219]
  50. Nat Clim Chang. 2014 Sep 1;4(9):806-810 [PMID: 25737744]
  51. Proc Natl Acad Sci U S A. 2024 Jan 23;121(4):e2311132121 [PMID: 38227667]
  52. New Phytol. 2016 Apr;210(2):459-70 [PMID: 26619197]
  53. Proc Natl Acad Sci U S A. 2014 Jul 1;111(26):9527-32 [PMID: 24979781]
  54. Environ Pollut. 2022 Jul 1;304:119104 [PMID: 35301033]
  55. Glob Chang Biol. 2022 Dec;28(24):7428-7436 [PMID: 36002391]
  56. Water Res. 2016 Oct 15;103:30-37 [PMID: 27429352]
  57. Glob Chang Biol. 2023 Mar;29(5):1359-1376 [PMID: 36504289]
  58. Oecologia. 1999 Mar;118(3):353-360 [PMID: 28307279]
  59. Plant Cell Environ. 2002 Feb;25(2):251-263 [PMID: 11841668]
  60. Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):436-41 [PMID: 25548156]
  61. New Phytol. 2020 Mar;225(5):1835-1851 [PMID: 31514244]
  62. Sci Total Environ. 2024 Nov 15;951:175805 [PMID: 39197757]
  63. Nat Commun. 2020 Sep 8;11(1):4241 [PMID: 32901006]
  64. New Phytol. 2023 Dec;240(5):1743-1757 [PMID: 37753542]
  65. Nat Ecol Evol. 2018 Nov;2(11):1735-1744 [PMID: 30349095]
  66. Science. 2020 Apr 17;368(6488):261-266 [PMID: 32299945]

Grants

  1. CZ.02.01.01/00/22_008/0004635/Ministerstvo ��kolstv��, Ml��de��e a T��lov��chovy
  2. 23 -07583S/Grantov�� Agentura ��esk�� Republiky
  3. 24 -11119S/Grantov�� Agentura ��esk�� Republiky

MeSH Term

Forests
Trees
Fagus
Picea
Climate Change
Nitrogen
Water
Atmosphere
Abies
Droughts

Chemicals

Nitrogen
Water

Word Cloud

Created with Highcharts 10.0.0speciesgrowthtreenitrogenairdepositionchangesiWUEEuropeanbeechNorwaysprucefiracidicdynamicsenvironmentalforestphysiologyuptakenutrientshiftsisotopes��Nlong-termtrendsefficiencyavailabilitysilvertemperatedominantexhibitedprecipitationpollutionincreasedphysiologicallowerconditionsstemroleHuman-inducedalteringproductivitycompositionsignificantlyimpactingwateracquisitionInvestigatingintricateinterplayplantanalyzedtree-ring��C��Otrackintrinsicwater-useuniqueold-growthmountainsince1501���cefindingsrevealsaturationexacerbatedresultingdeclinesperiodshighdroughtfrequencycontrastdeep-rooteddeciduousdemonstratedresilienceacidbenefitingdryaciditythrivingelevatedtemperaturestherebysustainingregardlesspotentialclimaticlimitationsSilvershoweddynamicresponsecontemporaryadaptationsleafgasexchangeallowingacceleratedcleanerdifferentresponsesunderscorecompetitiongainingdominancedeclineFurthermoreinfluenceontogenyevidenttree-ringsinitialvalueshigherreflectingecologicalagestudyintegratestree-growthrevealingpivotalatmosphericchemistryshapingcompetitivetrajectoriesforestsGrowthAssemblageDynamicsTemperateForestTreeSpeciesMatchPhysiologicalResilienceChangesAtmosphericChemistryCO2fertilizationstableringswater���use

Similar Articles

Cited By

No available data.