Serum and Tissue Kinetics of Oxolinic Acid in Black Rockfish (Sebastes schlegelii) Following a Single Oral Administration at Two Temperatures.

Jun Sung Bae, Chae Won Lee, Chan Yeong Yang, Eun Ha Jeong, Jung Soo Seo, Mun-Gyeong Kwon, Ji-Hoon Lee
Author Information
  1. Jun Sung Bae: Department of Aquatic Life Medicine, Kunsan National University, Gunsan, Republic of Korea.
  2. Chae Won Lee: Department of Aquatic Life Medicine, Kunsan National University, Gunsan, Republic of Korea.
  3. Chan Yeong Yang: Department of Aquatic Life Medicine, Kunsan National University, Gunsan, Republic of Korea.
  4. Eun Ha Jeong: Department of Aquatic Life Medicine, Kunsan National University, Gunsan, Republic of Korea.
  5. Jung Soo Seo: Aquatic Disease Control Division, National Fisheries Products Quality Management Service, Busan, Republic of Korea.
  6. Mun-Gyeong Kwon: Aquatic Disease Control Division, National Fisheries Products Quality Management Service, Busan, Republic of Korea.
  7. Ji-Hoon Lee: Department of Aquatic Life Medicine, Kunsan National University, Gunsan, Republic of Korea. ORCID

Abstract

The objective of this study was to investigate the pharmacokinetic (PK) properties of oxolinic acid (OA) in black rockfish (Sebastes schlegelii) following a single oral administration of 30���mg/kg at 13��C and 22��C. Serum and tissue (muscle, liver and kidney) samples were collected at pre-determined time points and analysed using high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). The results demonstrated that temperature significantly influenced the PK parameters of OA. The terminal half-life (t) was prolonged at 22��C across all tissues, while the total body clearance (CL/F) was reduced, suggesting a slower drug elimination at higher temperatures. The peak concentration (C) and the area under the concentration-time curve (AUC) values increased with temperature, indicating enhanced systemic exposure at 22��C. The volume of distribution (Vz/F) decreased from 13��C to 22��C, indicating reduced tissue distribution of OA at the higher temperature. PK/pharmacodynamic (PK/PD) analysis revealed that a single oral dose of 30���mg/kg was insufficient to achieve optimal antibacterial efficacy, implying that higher doses may be necessary. These findings highlight the necessity of temperature-adjusted dosing strategies for OA treatment in black rockfish aquaculture to optimise therapeutic efficacy while minimising antimicrobial resistance risks.

Keywords

References

  1. AliAbadi, F. S., and P. Lees. 2000. ���Antibiotic Treatment for Animals: Effect on Bacterial Population and Dosage Regimen Optimisation.��� International Journal of Antimicrobial Agents 14: 307���313. https://doi.org/10.1016/S0924���8579(00)00142���4.
  2. Anderson, V. E., and N. Osheroff. 2001. ���Type II Topoisomerases as Targets for Quinolone Antibacterials Turning Dr. Jekyll Into Mr. Hyde.��� Current Pharmaceutical Design 7: 337���353. https://doi.org/10.2174/1381612013398013.
  3. Bae, J. S., C. W. Lee, C. Y. Yang, et al. 2023. ���The Acute Toxicity and Efficacy Evaluation Against Aeromonas salmonicida of Aquatic Drugs Oxolinic Acid, Neomycin���Oxytetracycline, and Florfenicol in Guppy (Poecilia reticulata).��� Journal of Fish Pathology 36: 293���302. https://doi.org/10.7847/jfp.2023.36.2.293.
  4. Barnes, A. C., C. S. Lewin, T. S. Hastings, and S. G. Amyes. 1991. ���In Vitro Susceptibility of the Fish Pathogen Aeromonas salmonicida to Flumequine.��� Antimicrobial Agents and Chemotherapy 35: 2634���2635. https://doi.org/10.1128/aac.35.12.2634.
  5. Baron, S., S. A. Granier, E. Larvor, et al. 2017. ���Aeromonas Diversity and Antimicrobial Susceptibility in Freshwater���An Attempt to Set Generic Epidemiological Cut���Off Values.��� Frontiers in Microbiology 8: 503. https://doi.org/10.3389/fmicb.2017.00503.
  6. Barry, A. L., R. N. Jones, C. Thornsberry, L. W. Ayers, E. H. Gerlach, and H. M. Sommers. 1984. ���Antibacterial Activities of Ciprofloxacin, Norfloxacin, Oxolinic Acid, Cinoxacin, and Nalidixic Acid.��� Antimicrobial Agents and Chemotherapy 25: 633���637. https://doi.org/10.1128/aac.25.5.633.
  7. Bj��rklund, H. V., and G. Bylund. 1991. ���Comparative Pharmacokinetics and Bioavailability of Oxolinic Acid and Oxytetracycline in Rainbow Trout (Oncorhynchus mykiss).��� Xenobiotica 21: 1511���1520. https://doi.org/10.3109/00498259109044401.
  8. Bj��rklund, H. V., A. Eriksson, and G. Bylund. 1992. ���Temperature���Related Absorption and Excretion of Oxolinic Acid in Rainbow Trout (Oncorhynchus mykiss).��� Aquaculture 102: 17���27. https://doi.org/10.1016/0044���8486(92)90285���S.
  9. Choi, H. S., B. Y. Jee, M. Y. Cho, and M. Park. 2010. ���Monitoring of Pathogens on the Cultured Korean Rockfish Sebastes Schlegeli in the Marine Cages Farms of South Sea Area From 2006 to 2008.��� Journal of Fish Pathology 23: 27���35.
  10. Choi, H. S., J. I. Myoung, M. Park, and M. Y. Cho. 2009. ���A Study on the Summer Mortality of Korean Rockfish Sebastes Schlegeli in Korea.��� Journal of Fish Pathology 22: 155���162.
  11. ������ek, A., M. Dolejsk��, R. Sochorov��, K. Strachotov��, V. Pia��kov��, and T. Vesel��. 2010. ���Antimicrobial Resistance and Its Genetic Determinants in Aeromonads Isolated in Ornamental (Koi) Carp (Cyprinus carpio koi) and Common Carp (Cyprinus carpio).��� Veterinary Microbiology 142: 435���439. https://doi.org/10.1016/j.vetmic.2009.10.001.
  12. Clarke, A., and N. M. Johnston. 1999. ���Scaling of Metabolic Rate With Body Mass and Temperature in Teleost Fish.��� Journal of Animal Ecology 68: 893���905. https://doi.org/10.1046/j.1365���2656.1999.00337.x.
  13. Coyne, R., O. Samuelsen, H. Kongshaug, et al. 2004. ���A Comparison of Oxolinic Acid Concentrations in Farmed and Laboratory Held Rainbow Trout (Oncorhynchus mykiss) Following Oral Therapy.��� Aquaculture 239: 1���13. https://doi.org/10.1016/j.aquaculture.2003.11.034.
  14. Dauble, D. D., and L. R. Curtis. 1989. ���Rapid Branchial Excretion of Dietary Quinoline by Rainbow Trout (Salmo Gairdneri).��� Canadian Journal of Fisheries and Aquatic Sciences 46: 705���713. https://doi.org/10.1139/f89���089.
  15. Drlica, K., S. Coughlin, and M. L. Gennaro. 1990. ���Mode of Action of Quinolones: Biochemical Aspects.��� In The New Generation of Quinolones, edited by C. Siporin, C. L. Heifetz, and J. M. Domagala, 45���62. Marcel Dekker.
  16. Ellis, A. E., R. J. Roberts, and P. Tytler. 1978. ���The Anatomy and Physiology of Teleosts.��� In Fish Pathology, edited by R. J. Roberts, 12���54. Bailli��re Tindall.
  17. Gleckman, R., S. Alvarez, D. W. Joubert, and S. J. Matthews. 1979. ���Drug Therapy Reviews: Oxolinic Acid.��� American Journal of Hospital Pharmacy 36: 1077���1079. https://doi.org/10.1093/ajhp/36.8.1077.
  18. Han, H. J., J. Y. Song, M. Y. Cho, H. S. Choi, S. H. Jung, and H. G. Seo. 2020. ���Monitoring of Diseases Including Nematode Clavinema Mariae Infections in the Cultured Korean Rockfish Sebastes Schlegeli During 2013���2016.��� Korean Journal of Fisheries and Aquatic Sciences 53: 432���442. https://doi.org/10.5657/KFAS.2020.0432.
  19. Haugland, G. T., K. O. Kverme, R. Hannisdal, et al. 2019. ���Pharmacokinetic Data Show That Oxolinic Acid and Flumequine Are Absorbed and Excreted Rapidly From Plasma and Tissues of Lumpfish.��� Frontiers in Veterinary Science 6: 394. https://doi.org/10.3389/fvets.2019.00394.
  20. Hayatgheib, N., S. Calvez, C. Fournel, L. Pineau, H. Pouliquen, and E. Moreau. 2021. ���Antimicrobial Susceptibility Profiles and Resistance Genes in Genus Aeromonas Spp. Isolated From the Environment and Rainbow Trout of Two Fish Farms in France.��� Microorganisms 9: 1201. https://doi.org/10.3390/microorganisms9061201.
  21. Hunn, J. B., and J. L. Allen. 1974. ���Movement of Drugs Across the Gills of Fishes.��� Annual Review of Pharmacology 14: 47���54. https://doi.org/10.1146/annurev.pa.14.040174.000403.
  22. Hustvedt, S. O., R. Salte, and V. Vassvik. 1992. ���Combatting Cold���Water Vibriosis in Atlantic Salmon (Salmo salar L.) With Oxolinic Acid: A Case Report.��� Aquaculture 103: 213���219. https://doi.org/10.1016/0044���8486(92)90167���J.
  23. Jee, B. Y., Y. H. Do, B. H. Min, et al. 2015. ���Changes of Blood Parameters in Korean Rockfish Sebastes Schlegeli Subjected to Acute Hypoxia at Different Water Temperatures.��� Korean Journal of Environmental Biology 33: 412���418. https://doi.org/10.11626/KJEB.2015.33.4.412.
  24. Kiessling, A., D. Johansson, I. H. Zahl, and O. B. Samuelsen. 2009. ���Pharmacokinetics, Plasma Cortisol and Effectiveness of Benzocaine, MS���222 and Isoeugenol Measured in Individual Dorsal Aorta���Cannulated Atlantic Salmon (Salmo salar) Following Bath Administration.��� Aquaculture 286: 301���308. https://doi.org/10.1016/j.aquaculture.2008.09.037.
  25. Kim, K. H., Y. J. Hwang, and S. R. Kwon. 2001. ���Influence of Daily Water Temperature Changes on the Chemiluminescent Response and Mortality of Cultured Rockfish (Sebastes Schlegeli).��� Aquaculture 192: 93���99. https://doi.org/10.1016/S0044���8486(00)00460���9.
  26. Korean Meteorological Administration. 2023. ���Open MET Data Portal.��� Retrieved from. https://data.kma.go.kr/resources/html/en/aowdp.html.
  27. Korean Statistical Information Service. 2023. ���Status of Fish Culture. The Current Fish Culture by City & Province, Ward & County, by Culture Type by Species.��� Retrieved from. https://kosis.kr/eng/search/searchList.do.
  28. Lee, B. H., S. B. Lee, E. B. Noh, J. M. Ryu, and B. S. Kim. 2023. ���Reference Intervals of Hematological and Histopathological Index at Three Different Temperatures in Korean Rockfish Sebastes schlegelii.��� Journal of Fish Pathology 36: 369���378. https://doi.org/10.7847/jfp.2023.36.2.369.
  29. Lee, D. C., Y. C. Park, C. Y. Jeon, et al. 2013. ���A Report on the 2012 Mass Summer Mortalities of Black Rockfish, Sebastes Schlegeli in the Southeast Sea, Korea.��� Journal of Fish Pathology 26: 173���183. https://doi.org/10.7847/jfp.2013.26.3.173.
  30. Lee, J. H., C. W. Lee, G. W. Kim, et al. 2022. ���Oral Pharmacokinetic Profile and Withdrawal Time Estimation for Tylosin Tartrate in the Cultured Olive Flounder Paralichthys olivaceus.��� Aquaculture Reports 26: 101332. https://doi.org/10.1016/j.aqrep.2022.101332.
  31. Lo, D. Y., Y. J. Lee, J. H. Wang, and H. C. Kuo. 2014. ���Antimicrobial Susceptibility and Genetic Characterisation of Oxytetracycline���Resistant Edwardsiella tarda Isolated From Diseased Eels.��� Veterinary Record 175: 203���203. https://doi.org/10.1136/vr.101580.
  32. Martinsen, B., and T. E. Horsberg. 1995. ���Comparative Single���Dose Pharmacokinetics of Four Quinolones, Oxolinic Acid, Flumequine, Sarafloxacin, and Enrofloxacin, in Atlantic Salmon (Salmo salar) Held in Seawater at 10 Degrees C.��� Antimicrobial Agents and Chemotherapy 39: 1059���1064. https://doi.org/10.1128/aac.39.5.1059.
  33. Ministry of Food and Drug Safety. 2024. ���Korea Food Standards Codex.��� Retrieved from https://various.foodsafetykorea.go.kr/fsd.
  34. Mizanur, R. M., and S. C. Bai. 2014. ���A Review of the Optimum Feeding Rates and Feeding Frequency in Korean Rockfish Sebastes Schlegeli Reared at Seven Different Water Temperatures.��� Fisheries and Aquatic Sciences 17: 229���247. https://doi.org/10.5657/FAS.2014.0229.
  35. Patel, J. B., T. J. Abraham, A. Bardhan, et al. 2023. ���Efficacy of Oxolinic Acid Against Aeromonas hydrophila Infection in Nile Tilapia Oreochromis niloticus Juveniles.��� Aquaculture Studies 24. https://doi.org/10.4194/AQUAST1653.
  36. Poher, I., and G. Blanc. 1998. ���Pharmacokinetics of a Discontinuous Absorption Process of Oxolinic Acid in Turbot, Scophthalmus maximus, After a Single Oral Administration.��� Xenobiotica 28: 1061���1073. https://doi.org/10.1080/004982598238958.
  37. Rairat, T., C. Y. Hsieh, W. Thongpiam, N. Chuchird, and C. C. Chou. 2020. ���Temperature���Dependent Non���Linear Pharmacokinetics of Florfenicol in Nile Tilapia (Oreochromis niloticus) and Its Implementation in Optimal Dosing Regimen Determination.��� Aquaculture 517: 734794. https://doi.org/10.1016/j.aquaculture.2019.734794.
  38. Rairat, T., S. Kumphaphat, N. Chuchird, et al. 2023. ���Pharmacokinetics, Optimal Dosages and Withdrawal Time of Florfenicol in Asian Seabass (Lates calcarifer) After Oral Administration via Medicated Feed.��� Journal of Fish Diseases 46: 75���84. https://doi.org/10.1111/jfd.13719.
  39. Rigos, G., M. Alexis, A. Andriopoulou, and I. Nengas. 2002b. ���Pharmacokinetics and Tissue Distribution of Oxytetracycline in Sea Bass, Dicentrarchus labrax, at Two Water Temperatures.��� Aquaculture 210: 59���67. https://doi.org/10.1016/S0044���8486(01)00868���7.
  40. Rigos, G., M. Alexis, A. Andriopoulou, and I. Nengas. 2002c. ���Temperature���Dependent Pharmacokinetics and Tissue Distribution of Oxolinic Acid in Sea Bass, Dicentrarchus labrax L., After a Single Intravascular Injection.��� Aquaculture Research 33: 1175���1181. https://doi.org/10.1046/j.1365���2109.2002.00783.x.
  41. Rigos, G., M. Alexis, A. E. Tyrpenou, I. Nengas, I. Piper, and G. Troisi. 2002a. ���Pharmacokinetics of Oxolinic Acid in Gilthead Sea Bream, Sparus aurata L.��� Journal of Fish Diseases 25: 401���408. https://doi.org/10.1046/j.1365���2761.2002.00391.x.
  42. Rigos, G., D. Kogiannou, F. Padr��s, et al. 2021. ���Best Therapeutic Practices for the Use of Antibacterial Agents in Finfish Aquaculture: A Particular View on European Seabass (Dicentrarchus labrax) and Gilthead Seabream (Sparus aurata) in Mediterranean Aquaculture.��� Reviews in Aquaculture 13: 1285���1323. https://doi.org/10.1016/0044���8486(92)90167���J.
  43. Rigos, G., A. E. Tyrpenou, I. Nengas, M. Alexis, and G. M. Troisi. 2004. ���The Kinetic Profile of Oxolinic Acid in Sharpsnout Sea Bream, Diplodus puntazzo (Cetti 1777).��� Aquaculture Research 35: 1299���1304. https://doi.org/10.1111/j.1365���2109.2004.01127.x.
  44. Rodgers, C. J., and B. Austin. 1983. ���Oxolinic Acid for Control of Enteric Redmouth Disease in Rainbow Trout.��� Veterinary Record 112: 83.
  45. Rogstad, A., O. F. Ellingsen, and C. Syvertsen. 1993. ���Pharmacokinetics and Bioavailability of Flumequine and Oxolinic Acid After Various Routes of Administration to Atlantic Salmon in Seawater.��� Aquaculture 110: 207���220. https://doi.org/10.1016/0044���8486(93)90369���A.
  46. Samuelsen, O. B. 1997. ���Efficacy of Bath���Administered Flumequine and Oxolinic Acid in the Treatment of Vibriosis in Small Atlantic Halibut.��� Journal of Aquatic Animal Health 9: 127���131. https://doi.org/10.1577/1548���8667(1997)009<0127:EOBAFA>2.3.CO;2.
  47. Samuelsen, O. B. 2003. ���Administration of the Antibacterial Agents Flumequine and Oxolinic Acid to Small Turbot (Scophthalmus maximus L.) by Bath.��� Journal of Applied Ichthyology 19: 55���58. https://doi.org/10.1046/j.1439���0426.2003.00352.x.
  48. Samuelsen, O. B. 2006. ���Pharmacokinetics of Quinolones in Fish: A Review.��� Aquaculture 255: 55���75. https://doi.org/10.1016/j.aquaculture.2005.12.008.
  49. Samuelsen, O. B., and ��. Bergh. 2004. ���Efficacy of Orally Administered Florfenicol and Oxolinic Acid for the Treatment of Vibriosis in Cod (Gadus morhua).��� Aquaculture 235: 27���35. https://doi.org/10.1016/S0044���8486(03)00446���0.
  50. Samuelsen, O. B., ��. Bergh, and A. Ervik. 2003. ���A Single���Dose Pharmacokinetic Study of Oxolinic Acid and Vetoquinol, an Oxolinic Acid Ester, in Cod, Gadus morhua L., Held in Sea Water at 8��C and In Vitro Antibacterial Activity of Oxolinic Acid Against Vibrio Anguillarum Strains Isolated From Diseased Cod.��� Journal of Fish Diseases 26: 339���347. https://doi.org/10.1046/j.1365���2761.2003.00466.x.
  51. Samuelsen, O. B., and A. Ervik. 1999. ���A Single���Dose Pharmacokinetic Study of Oxolinic Acid and Vetoquinol, an Oxolinic Acid Ester, in Atlantic Halibut, Hippoglossus hippoglossus L., Held in Sea Water at 9��C.��� Journal of Fish Diseases 22: 13���23. https://doi.org/10.1046/j.1365���2761.1999.00133.x.
  52. Samuelsen, O. B., A. Ervik, L. Pursell, and P. Smith. 2000. ���Single���Dose Pharmacokinetic Study of Oxolinic Acid and Vetoquinol, an Oxolinic Acid Ester, in Atlantic Salmon (Salmo salar) Held in Seawater and In Vitro Antibacterial Activity Against Aeromonas salmonicida.��� Aquaculture 187: 213���224. https://doi.org/10.1016/S0044���8486(00)00315���X.
  53. Samuelsen, O. B., P. G. Kvenseth, J. H. Andreassen, L. Torkildsen, A. Ervik, and ��. Bergh. 2003. ���The Efficacy of a Single Intraperitoneal Injection of Oxolinic Acid in the Treatment of Bacterial Infections in Goldsinny Wrasse (Ctenolabrus rupestris) and Corkwing Wrasse (Symphodus melops) Studied Under Field and Laboratory Conditions.��� Journal of Veterinary Pharmacology and Therapeutics 26: 181���186. https://doi.org/10.1046/j.1365���2885.2003.00478.x.
  54. Scarano, C., F. Piras, S. Virdis, et al. 2018. ���Antibiotic Resistance of Aeromonas Ssp. Strains Isolated From Sparus aurata Reared in Italian Mariculture Farms.��� International Journal of Food Microbiology 284: 91���97. https://doi.org/10.1016/j.ijfoodmicro.2018.07.033.
  55. Scarano, C., C. Spanu, G. Ziino, et al. 2014. ���Antibiotic Resistance of Vibrio Species Isolated From Sparus Aurata Reared in Italian Mariculture.��� New Microbiologica 37: 329���337.
  56. Schrader, K. K. 2008. ���Compounds With Inhibitory Activity Against the Channel Catfish Pathogens Edwardsiella Ictaluri and Flavobacterium columnare.��� North American Journal of Aquaculture 70: 147���153. https://doi.org/10.1577/A07���027.1.
  57. Shan, Q., J. Wang, J. Wang, et al. 2018. ���Pharmacokinetic/Pharmacodynamic Relationship of Enrofloxacin Against Aeromonas hydrophila in Crucian Carp (Carassius auratus Gibelio).��� Journal of Veterinary Pharmacology and Therapeutics 41: 887���893. https://doi.org/10.1111/jvp.12678.
  58. Sorgel, F., and M. Kinzig. 1993. ���Pharmacokinetics of Gyrase Inhibitors, Part 2: Renal and Hepatic Elimination Pathways and Drug Interactions.��� American Journal of Medicine 94: 56S���69S. https://doi.org/10.1016/S0002���9343(20)31140���2.
  59. Stamm, J. M. 1989. ���In Vitro Resistance by Fish Pathogens to Aquacultural Antibacterials, Including the Quinolones Difloxacin (A���56619) and Sarafloxacin (A���56620).��� Journal of Aquatic Animal Health 1: 135���141. https://doi.org/10.1577/1548���8667(1989)001<0135:IVRBFP>2.3.CO;2.
  60. Touraki, M., I. Niopas, and V. Karagiannis. 2012. ���Treatment of Vibriosis in European Sea Bass Larvae, Dicentrarchus labrax L., With Oxolinic Acid Administered by Bath or Through Medicated Nauplii of Artemia franciscana (Kellogg): Efficacy and Residual Kinetics.��� Journal of Fish Diseases 35: 513���522. https://doi.org/10.1111/j.1365���2761.2012.01387.x.
  61. US Food and Drug Administration. 2015. ���Studies to Evaluate the Metabolism and Residue Kinetics of Veterinary Drugs in Food���Producing Animals: Validation of Analytical Methods Used in Residue Depletion Studies.��� Retrieved from https://www.fda.gov/media/78356/download.
  62. Vinh, P. Q., N. Q. Thinh, M. Devreese, et al. 2024. ���Doxycycline Pharmacokinetics and Tissue Depletion in Striped Catfish (Pagasianodon Hypophthalmus) After Oral Administration.��� Journal of Veterinary Pharmacology and Therapeutics, Advance Online Publication, 1���9. https://doi.org/10.1111/jvp.13471.
  63. Woo, S. J. 2021. ���Temperature���Dependent Pharmacokinetics of Trichlorfon in Common Carp (Cyprinus carpio L.) After Bath Immersion Therapy.��� Journal of Veterinary Pharmacology and Therapeutics 44: 820���828. https://doi.org/10.1111/jvp.12978.
  64. Wright, D. H., G. H. Brown, M. L. Peterson, and J. C. Rotschafer. 2000. ���Application of Fluoroquinolone Pharmacodynamics.��� Journal of Antimicrobial Chemotherapy 46: 669���683. https://doi.org/10.1093/jac/46.5.669.
  65. Xu, N., M. Li, Y. U. Fu, et al. 2019. ���Effect of Temperature on Plasma and Tissue Kinetics of Doxycycline in Grass Carp (Ctenopharyngodon idella) After Oral Administration.��� Aquaculture 511: 734204. https://doi.org/10.1016/j.aquaculture.2019.734204.
  66. Xu, N., M. Li, Z. Lin, and X. Ai. 2022. ���Comparative Pharmacokinetics of Sulfadiazine and Its Metabolite N4���Acetyl Sulfadiazine in Grass Carp (Ctenopharyngodon idella) at Different Temperatures After Oral Administration.��� Pharmaceutics 14: 712. https://doi.org/10.3390/pharmaceutics14040712.
  67. Xu, N., W. Sun, H. Zhang, et al. 2023. ���Plasma and Tissue Kinetics of Enrofloxacin and Its Metabolite, Ciprofloxacin, in Yellow Catfish (Pelteobagrus fulvidraco) After a Single Oral Administration at Different Temperatures.��� Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 266: 109554. https://doi.org/10.1016/j.cbpc.2023.109554.
  68. Yang, F., N. Sun, Z. S. Zhao, G. Y. Wang, and M. F. Wang. 2015. ���Pharmacokinetics of Doxycycline After a Single Intravenous, Oral or Intramuscular Dose in Muscovy Ducks (Cairina moschata).��� British Poultry Science 56: 137���142. https://doi.org/10.1080/00071668.2014.989488.
  69. Yang, F., F. Yang, G. Wang, T. Kong, and B. Liu. 2019. ���Pharmacokinetics of Florfenicol and its Metabolite Florfenicol Amine in Crucian Carp (Carassius auratus) at Three Temperatures After Single Oral Administration.��� Aquaculture 503: 446���451. https://doi.org/10.1016/j.aquaculture.2019.01.037.
  70. Yang, F., F. Yang, G. Wang, T. Kong, H. Wang, and C. Zhang. 2020. ���Effects of Water Temperature on Tissue Depletion of Florfenicol and Its Metabolite Florfenicol Amine in Crucian Carp (Carassius auratus Gibelio) Following Multiple Oral Doses.��� Aquaculture 515: 734542. https://doi.org/10.1016/j.aquaculture.2019.734542.
  71. Yano, I., T. Ito, M. Takano, and K. I. Inui. 1997. ���Evaluation of Renal Tubular Secretion and Reabsorption of Levofloxacin in Rats.��� Pharmaceutical Research 14: 508���511. https://doi.org/10.1023/A:1012111902798.
  72. Zhang, Y., M. Huo, J. Zhou, and S. Xie. 2010. ���PKSolver: An Add���In Program for Pharmacokinetic and Pharmacodynamic Data Analysis in Microsoft Excel.��� Computer Methods and Programs in Biomedicine 99: 306���314. https://doi.org/10.1016/j.cmpb.2010.01.007.

Grants

  1. /Ministry of Oceans and Fisheries

Word Cloud

Created with Highcharts 10.0.0OA22��CtemperatureblackrockfishhigherPKoxolinicacidSebastesschlegeliisingleoral30���mg/kg13��CSerumtissuereducedindicatingdistributionefficacyobjectivestudyinvestigatepharmacokineticpropertiesfollowingadministrationmuscleliverkidneysamplescollectedpre-determinedtimepointsanalysedusinghigh-performanceliquidchromatographycoupledtandemmassspectrometryHPLC-MS/MSresultsdemonstratedsignificantlyinfluencedparametersterminalhalf-lifetprolongedacrosstissuestotalbodyclearanceCL/FsuggestingslowerdrugeliminationtemperaturespeakconcentrationCareaconcentration-timecurveAUCvaluesincreasedenhancedsystemicexposurevolumeVz/FdecreasedPK/pharmacodynamicPK/PDanalysisrevealeddoseinsufficientachieveoptimalantibacterialimplyingdosesmaynecessaryfindingshighlightnecessitytemperature-adjusteddosingstrategiestreatmentaquacultureoptimisetherapeuticminimisingantimicrobialresistancerisksTissueKineticsOxolinicAcidBlackRockfishFollowingSingleOralAdministrationTwoTemperaturespharmacokinetics

Similar Articles

Cited By

No available data.