Impact of Structure on Excitation Energies and S-T Energy Gaps of Asymmetrical Systems of Interest for Inverted Singlet-Triplet Gaps.

Gideon Odonkor, Samuel O Odoh
Author Information
  1. Gideon Odonkor: Department of Chemistry, University of Nevada, Reno, Nevada, USA.
  2. Samuel O Odoh: Department of Chemistry, University of Nevada Reno, Reno, Nevada, USA. ORCID

Abstract

Computational investigations of Inverted Singlet-Triplet (INVEST) emitters often rely on ADC(2) and TD-DFT excitation energies (EEs) obtained with the vertical approximation. Here, we first considered several cyclazine derivatives and examine the sensitivity of vertical EEs (VEEs) as well as singlet-triplet gaps, ��E gaps, to the level at which the ground state (S) structure was optimized. For cyclazine, VEEs and vertical gaps from ADC(2) or TD-DFT are spread over a narrow range (<���0.064���eV) whether the S structure is optimized with various DFT, CCSD, and RI-MP2 methods. However, for asymmetric cyclazines, depending on the protocol for optimizing S structures, not only are VEEs spread over a substantially wider range (up to 0.75���eV) but so are vertical ��E gaps (up to 0.30���eV), leading to cases where, with different S structures, one obtains positive vertical ��E gaps or significantly negative gaps. We relate this behavior to the introduction of significant asymmetry and bond-length variations in the cyclazine derivatives, formed by ligand functionalization or modification of the cyclazine core. On a more positive note, adiabatic EEs (AEEs) and adiabatic ��E gaps display significantly lower sensitivity (7-30�� less) to the geometry optimization protocols than their vertical analogs. Crucially, for cyclazine, the M06-HF functional with 100% non-local exchange provides the closest S geometry to available CCSD(T) data. We show that this effect exists also for other frameworks (e.g., azulene, pentaazaphenalene, and non-alternant polycyclic hydrocarbons) that have been considered for the INVEST property, with VEEs spread over a broader range of up to 1.19���eV and vertical ��E gaps over a range of 0.62���eV. For INVEST emitters, it is therefore extremely important to judiciously choose the computational protocol for optimizing ground state geometries, in computing VEEs and vertical ��E gaps.

Keywords

References

  1. N. Aizawa, Y. J. Pu, Y. Harabuchi, et al., ���Delayed Fluorescence From Inverted Singlet and Triplet Excited States,��� Nature 609 (2022): 502���506.
  2. M. Bedogni, D. Giavazzi, F. Di Maiolo, and A. Painelli, ���Shining Light on Inverted Singlet���Triplet Emitters,��� Journal of Chemical Theory and Computation 20 (2023): 902.
  3. K. Curtis, C. King, and S. O. Odoh, ���Novel Triangulenes: Computational Investigations of Energy Thresholds for Photocatalytic Water Splitting,��� ChemPhysChem 24 (2023): e202300556.
  4. K. Jorner, R. Pollice, C. Lavigne, and A. Aspuru���Guzik, ���Ultrafast Computational Screening of Molecules With Inverted Singlet���Triplet Energy Gaps Using the Pariser���Parr���Pople Semiempirical Quantum Chemistry Method,��� Journal of Physical Chemistry A 128 (2024): 2445���2456.
  5. J. Li, Z. Li, H. Liu, et al., ���Organic Molecules With Inverted Singlet���Triplet Gaps,��� Frontiers in Chemistry 10 (2022): 999856.
  6. G. Ricci, J. C. Sancho���Garc��a, and Y. Olivier, ���Establishing Design Strategies for Emissive Materials With an Inverted Singlet���Triplet Energy Gap (INVEST): A Computational Perspective on How Symmetry Rules the Interplay Between Triplet Harvesting and Light Emission,��� Journal of Materials Chemistry C 10 (2022): 12680���12698.
  7. T. Won, K. Nakayama, and N. Aizawa, ���Inverted Singlet���Triplet Emitters for Organic Light���Emitting Diodes,��� Chemical Physics Reviews 4 (2023): 021310.
  8. W. Leupin and J. Wirz, ���Low���Lying Electronically Excited States of Cycl[3.3.3]Azine, a Bridged 12.Pi.���Perimeter,��� Journal of the American Chemical Society 102 (1980): 6068���6075.
  9. M. W. Duszka, M. F. Rode, and A. L. Sobolewski, ���Computational Design of Boron���Free Triangular Molecules With Inverted Singlet���Triplet Energy Gap,��� Physical Chemistry Chemical Physics 26 (2024): 19130���19137.
  10. J. Ehrmaier, X. Huang, E. J. Rabe, et al., ���Molecular Design of Heptazine���Based Photocatalysts: Effect of Substituents on Photocatalytic Efficiency and Photostability,��� Journal of Physical Chemistry A 124 (2020): 3698���3710.
  11. D. Blasco, R. T. Nasibullin, R. R. Valiev, M. Monge, J. M. L��pez���de���Luzuriaga, and D. Sundholm, ���Experimental and Computational Studies of the Optical Properties of 2,5,8���Tris(Phenylthiolato)heptazine With an Inverted Singlet���Triplet Gap,��� Physical Chemistry Chemical Physics 26 (2024): 5922���5931.
  12. D. Blasco, R. T. Nasibullin, R. R. Valiev, and D. Sundholm, ���Gold(i)���Containing Light���Emitting Molecules With an Inverted Singlet���Triplet Gap,��� Chemical Science 14 (2023): 3873���3880.
  13. J. T. Blaskovits, M. H. Garner, and C. Corminboeuf, ���Symmetry���Induced Singlet���Triplet Inversions in Non���Alternant Hydrocarbons,��� Angewandte Chemie. International Edition 62 (2023): e202218156.
  14. D. R. Dombrowski, T. Schulz, M. Kleinschmidt, and C. M. Marian, ���R2022: A DFT/MRCI Ansatz With Improved Performance for Double Excitations,��� Journal of Physical Chemistry A 127 (2023): 2011���2025.
  15. W. Domcke and A. L. Sobolewski, ���Water Oxidation and Hydrogen Evolution With Organic Photooxidants: A Theoretical Perspective,��� Journal of Physical Chemistry B 126 (2022): 2777���2788.
  16. A. Dreuw and M. Hoffmann, ���The Inverted Singlet���Triplet Gap: A Vanishing Myth?,��� Frontiers in Chemistry 11 (2023): 1239604.
  17. D. Drwal, M. Matousek, P. Golub, et al., ���Role of Spin Polarization and Dynamic Correlation in Singlet���Triplet Gap Inversion of Heptazine Derivatives,��� Journal of Chemical Theory and Computation 19 (2023): 7606���7616.
  18. M. H. Garner, J. T. Blaskovits, and C. Corminboeuf, ���Double���Bond Delocalization in Non���Alternant Hydrocarbons Induces Inverted Singlet���Triplet Gaps,��� Chemical Science 14 (2023): 10458���10466.
  19. M. H. Garner, J. T. Blaskovits, and C. Corminboeuf, ���Enhanced Inverted Singlet���Triplet Gaps in Azaphenalenes and Non���Alternant Hydrocarbons,��� Chemical Communications 60 (2024): 2070���2073.
  20. A. E. Izu, J. M. Matxain, and D. Casanova, ���Reverse Intersystem Crossing Mechanisms in Doped Triangulenes,��� Physical Chemistry Chemical Physics 26 (2024): 11459���11468.
  21. P. Karak, P. Manna, A. Banerjee, K. Ruud, and S. Chakrabarti, ���Reverse Intersystem Crossing Dynamics in Vibronically Modulated Inverted Singlet���Triplet Gap System: A Wigner Phase Space Study,��� Journal of Physical Chemistry Letters 15 (2024): 7603���7609.
  22. L. Kunze, T. Froitzheim, A. Hansen, S. Grimme, and J. M. Mewes, �����DFT Predicts Inverted Singlet���Triplet Gaps With Chemical Accuracy at a Fraction of the Cost of Wave Function���Based Approaches,��� Journal of Physical Chemistry Letters 15 (2024): 8065���8077.
  23. A. Majumdar and R. Ramakrishnan, ���Resilience of Hund's Rule in the Chemical Space of Small Organic Molecules,��� Physical Chemistry Chemical Physics 26 (2024): 14505���14513.
  24. ��. Omar, X. Y. Xie, A. Troisi, and D. Padula, ���Identification of Unknown Inverted Singlet���Triplet Cores by High���Throughput Virtual Screening,��� Journal of the American Chemical Society 145 (2023): 19790.
  25. Y. J. Pu, D. Valverde, J. C. Sancho���Garc��a, and Y. Olivier, ���Computational Design of Multiple Resonance���Type BN Molecules for Inverted Singlet and Triplet Excited States,��� Journal of Physical Chemistry A 127 (2023): 10189���10196.
  26. M. E. Sandoval���Salinas, G. Ricci, A. J. P��rez���Jim��nez, D. Casanova, Y. Olivier, and J. C. Sancho���Garc��a, ���Correlation vs. Exchange Competition Drives the Singlet���Triplet Excited���State Inversion in Non���Alternant Hydrocarbons,��� Physical Chemistry Chemical Physics 25 (2023): 26417.
  27. A. L. Sobolewski and W. Domcke, ���Are Heptazine���Based Organic Light���Emitting Diode Chromophores Thermally Activated Delayed Fluorescence or Inverted Singlet���Triplet Systems?,��� Journal of Physical Chemistry Letters 12 (2021): 6852���6860.
  28. L. Tuckov��, M. Straka, R. R. Valiev, and D. Sundholm, ���On the Origin of the Inverted Singlet���Triplet Gap of the 5th Generation Light���Emitting Molecules,��� Physical Chemistry Chemical Physics 24 (2022): 18713���18721.
  29. Z. Z. Wei, S. S. Jiang, F. F. Qi, et al., ���Predicting and Designing Thermally Activated Delayed Fluorescence Molecules With Balanced ��EST and Transition Dipole Moment,��� Advanced Theory and Simulations 5 (2022): 2200494.
  30. K. Burke, J. Werschnik, and E. K. U. Gross, ���Time���Dependent Density Functional Theory: Past, Present, and Future,��� Journal of Chemical Physics 123 (2005): 062206.
  31. A. Dreuw and M. Head���Gordon, ���Single���Reference Ab Initio Methods for the Calculation of Excited States of Large Molecules,��� Chemical Reviews 105 (2005): 4009���4037.
  32. M. A. L. Marques and E. K. U. Gross, ���Time���Dependent Density Functional Theory,��� Annual Review of Physical Chemistry 55 (2004): 427���455.
  33. E. Runge and E. K. U. Gross, ���Density Functional Theory for Time���Dependent Systems,��� Physical Review Letters 52 (1984): 997���1000.
  34. R. J. Bartlett, ���Coupled���Cluster Theory and Its Equation���Of���Motion Extensions,��� WIREs Computational Molecular Science 2 (2012): 126���138.
  35. O. Christiansen, H. Koch, and P. J��rgensen, ���The Second���Order Approximate Coupled Cluster Singles and Doubles Model CC2,��� Chemical Physics Letters 243 (1995): 409���418.
  36. A. Hellweg, S. A. Gr��n, and C. H��ttig, ���Benchmarking the Performance of Spin���Component Scaled CC2 in Ground and Electronically Excited States,��� Physical Chemistry Chemical Physics 10 (2008): 4119���4127.
  37. J. Schirmer, ���Beyond the Random���Phase Approximation: A New Approximation Scheme for the Polarization Propagator,��� Physical Review A 26 (1982): 2395���2416.
  38. P. F. Loos, F. Lipparini, and D. Jacquemin, ���Heptazine, Cyclazine, and Related Compounds: Chemically���Accurate Estimates of the Inverted Singlet���Triplet Gap,��� Journal of Physical Chemistry Letters 14 (2023): 11069���11075.
  39. E. Monino and P. F. Loos, ���Connections and Performances of Green's Function Methods for Charged and Neutral Excitations,��� Journal of Chemical Physics 159 (2023): 034105.
  40. M. Alipour and T. Izadkhast, ���Do any Types of Double���Hybrid Models Render the Correct Order of Excited State Energies in Inverted Singlet���Triplet Emitters?,��� Journal of Chemical Physics 156 (2022): 064302.
  41. K. Curtis, O. Adeyiga, O. Suleiman, and S. O. Odoh, ���Building on the Strengths of a Double���Hybrid Density Functional for Excitation Energies and Inverted Singlet���Triplet Energy Gaps,��� Journal of Chemical Physics 158 (2023): 024116.
  42. S. Ghosh and K. Bhattacharyya, ���Origin of the Failure of Density Functional Theories in Predicting Inverted Singlet���Triplet Gaps,��� Journal of Physical Chemistry A 126 (2022): 1378���1385.
  43. R. Pollice, P. Friederich, C. Lavigne, G. D. Gomes, and A. Aspuru���Guzik, ���Organic Molecules With Inverted Gaps Between First Excited Singlet and Triplet States and Appreciable Fluorescence Rates,��� Matter 4 (2021): 1654.
  44. J. C. Sancho���Garc��a, E. Br��mond, G. Ricci, A. J. P��rez���Jim��nez, Y. Olivier, and C. Adamo, ���Violation of Hund's Rule in Molecules: Predicting the Excited���State Energy Inversion by TD���DFT With Double���Hybrid Methods,��� Journal of Chemical Physics 156 (2022): 034105.
  45. M. Feyereisen, G. Fitzgerald, and A. Komornicki, ���Use of Approximate Integrals in Ab Initio Theory���An Application in MP2 Energy Calculations,��� Chemical Physics Letters 208 (1993): 359���363.
  46. O. Vahtras, J. Almlof, and M. W. Feyereisen, ���Integral Approximations for LCAO���SCF Calculations,��� Chemical Physics Letters 213 (1993): 514���518.
  47. F. Weigend and M. Haser, ���RI���MP2: First Derivatives and Global Consistency,��� Theoretical Chemistry Accounts 97 (1997): 331���340.
  48. D. Jacquemin and C. Adamo, ���Bond Length Alternation of Conjugated Oligomers: Wave Function and DFT Benchmarks,��� Journal of Chemical Theory and Computation 7 (2011): 369���376.
  49. U. Salzner and A. Aydin, ���Improved Prediction of Properties of �����Conjugated Oligomers With Range���Separated Hybrid Density Functionals,��� Journal of Chemical Theory and Computation 7 (2011): 2568���2583.
  50. Y. Zhao and D. G. Truhlar, ���Density Functional for Spectroscopy: No Long���Range Self���Interaction Error, Good Performance for Rydberg and Charge���Transfer States, and Better Performance on Average Than B3LYP for Ground States,��� Journal of Physical Chemistry A 110 (2006): 13126���13130.
  51. I. Y. Zhang, N. Q. Su, ��. A. G. Br��mond, C. Adamo, and X. Xu, ���Doubly Hybrid Density Functional xDH���PBE0 From a Parameter���Free Global Hybrid Model PBE0,��� Journal of Chemical Physics 136 (2012): 174103.
  52. M. Wykes, N. Q. Su, X. Xu, C. Adamo, and J.���C. Sancho���Garc��a, ���Double Hybrid Functionals and the �����System Bond Length Alternation Challenge: Rivaling Accuracy of Post���HF Methods,��� Journal of Chemical Theory and Computation 11 (2015): 832���838.
  53. J. Bois and T. K��rzd��rfer, ���How Bond Length Alternation and Thermal Disorder Affect the Optical Excitation Energies of �����Conjugated Chains: A Combined Density Functional Theory and Molecular Dynamics Study,��� Journal of Chemical Theory and Computation 12 (2016): 1872.
  54. M. K. Cyranski, R. W. A. Havenith, M. A. Dobrowolski, et al., ���The Phenalenyl Motf: A Magnetic Chameleon,��� Chemistry���A European Journal 13 (2007): 2201.
  55. E. Kleinpeter and A. Koch, ���Cyclazines���Structure and Aromaticity or Antiaromaticity on the Magnetic Criterion,��� European Journal of Organic Chemistry 2022 (2022): e202101362.
  56. C. Trujillo, G. S��nchez���Sanz, I. Alkorta, and J. Elguero, ���An Insight on the Aromatic Changes in Closed Shell Icosagen, Tetrel, and Pnictogen Phenalenyl Derivatives,��� Structural Chemistry 28 (2017): 345���355.
  57. R. Pollice, B. Ding, and A. Aspuru���Guzik, ���Rational Design of Organic Molecules With Inverted Gaps Between the First Excited Singlet and Triplet,��� Matter 7 (2024): 1161���1186.
  58. E. Caldeweyher, S. Ehlert, A. Hansen, et al., ���A Generally Applicable Atomic���Charge Dependent London Dispersion Correction,��� Journal of Chemical Physics 150 (2019): 154122.
  59. J. P. Perdew, K. Burke, and M. Ernzerhof, ���Generalized Gradient Approximation Made Simple,��� Physical Review Letters 77 (1996): 3865���3868.
  60. Y. Zhao and D. G. Truhlar, ���A New Local Density Functional for Main���Group Thermochemistry, Transition Metal Bonding, Thermochemical Kinetics, and Noncovalent Interactions,��� Journal of Chemical Physics 125 (2006): 194101.
  61. Y. Zhao and D. G. Truhlar, ���The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06���Class Functionals and 12 Other Functionals,��� Theoretical Chemistry Accounts 120 (2008): 215.
  62. A. D. Becke, ���Density Functional Thermochemistry .3. The Role of Exact Exchange,��� Journal of Chemical Physics 98 (1993): 5648.
  63. K. Kim and K. D. Jordan, ���Comparison of Density Functional and MP2 Calculations on the Water Monomer and Dimer,��� Journal of Physical Chemistry 98 (1994): 10089���10094.
  64. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, ���Ab���Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields,��� Journal of Physical Chemistry 98 (1994): 11623.
  65. S. H. Vosko, L. Wilk, and M. Nusair, ���Accurate Spin���Dependent Electron Liquid Correlation Energies for Local Spin���Density Calculations���A Critical Analysis,��� Canadian Journal of Physics 58 (1980): 1200.
  66. T. Yanai, D. P. Tew, and N. C. Handy, ���A New Hybrid Exchange���Correlation Functional Using the Coulomb���Attenuating Method (CAM���B3LYP),��� Chemical Physics Letters 393 (2004): 51���57.
  67. S. Kozuch and J. M. L. Martin, ���DSD���PBEP86: In Search of the Best Double���Hybrid DFT With Spin���Component Scaled MP2 and Dispersion Corrections,��� Physical Chemistry Chemical Physics 13 (2011): 20104���20107.
  68. N. Mardirossian and M. Head���Gordon, �����B97M���V: A Combinatorially Optimized, Range���Separated Hybrid, Meta���GGA Density Functional With VV10 Nonlocal Correlation,��� Journal of Chemical Physics 144 (2016): 214110.
  69. F. Weigend and R. Ahlrichs, ���Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy,��� Physical Chemistry Chemical Physics 7 (2005): 3297���3305.
  70. S. Kossmann and F. Neese, ���Efficient Structure Optimization With Second���Order Many���Body Perturbation Theory: The RIJCOSX���MP2 Method,��� Journal of Chemical Theory and Computation 6 (2010): 2325���2338.
  71. F. Neese, F. Wennmohs, A. Hansen, and U. Becker, ���Efficient, Approximate and Parallel Hartree���Fock and Hybrid DFT Calculations. A ���Chain���Of���Spheres��� Algorithm for the Hartree���Fock Exchange,��� Chemical Physics 356 (2009): 98���109.
  72. F. Neese, ���Software Update: The ORCA Program System���Version 5.0,��� WIREs Computational Molecular Science 12 (2022): e1606.
  73. F. Neese, F. Wennmohs, U. Becker, and C. Riplinger, ���The ORCA Quantum Chemistry Program Package,��� Journal of Chemical Physics 152 (2020): 224108.
  74. M. Kallay, P. R. Nagy, D. Mester, et al., ���The MRCC Program System: Accurate Quantum Chemistry From Water to Proteins,��� Journal of Chemical Physics 152 (2020): 074107.
  75. M. K��llay, P. R. Nagy, and D. Mester, ���MRCC, A Quantum Chemical Program Suite,��� www.mrcc.hu.
  76. S. Hirata and M. Head���Gordon, ���Time���Dependent Density Functional Theory Within the Tamm���Dancoff Approximation,��� Chemical Physics Letters 314 (1999): 291���299.
  77. M. Casanova���P��ez and L. Goerigk, ���Time���Dependent Long���Range���Corrected Double���Hybrid Density Functionals With Spin���Component and Spin���Opposite Scaling: A Comprehensive Analysis of Singlet���Singlet and Singlet���Triplet Excitation Energies,��� Journal of Chemical Theory and Computation 17 (2021): 5165���5186.
  78. C. H��ttig, Response Theory and Molecular Properties a Tribute to Jan Linderberg and Poul J��rgensen, ed. H. J. ��. Jensen (Elsevier, 2005), 37.
  79. R. Izs��k, ���Single���Reference Coupled Cluster Methods for Computing Excitation Energies in Large Molecules: The Efficiency and Accuracy of Approximations,��� WIREs Computational Molecular Science 10 (2020): e1445.
  80. J. M. Turney, A. C. Simmonett, R. M. Parrish, et al., ���Psi4: An Open���Source Ab Initio Electronic Structure Program,��� WIREs Computational Molecular Science 2 (2012): 556.

Word Cloud

Created with Highcharts 10.0.0gapsverticalcyclazine��EVEEsSINVESTrangeADC2excitationenergiesEEsderivativesspread0adiabaticgeometryInvertedSinglet-TripletemittersTD-DFTconsideredsensitivitygroundstatestructureoptimizedCCSDprotocoloptimizingstructurespositivesignificantlyoptimizationfunctionalGapssinglet���tripletgapComputationalinvestigationsoftenrelyobtainedapproximationfirstseveralexaminewellsinglet-tripletlevelnarrow<���0064���eVwhethervariousDFTRI-MP2methodsHoweverasymmetriccyclazinesdependingsubstantiallywider75���eV30���eVleadingcasesdifferentoneobtainsnegativerelatebehaviorintroductionsignificantasymmetrybond-lengthvariationsformedligandfunctionalizationmodificationcorenoteAEEsdisplaylower7-30��lessprotocolsanalogsCruciallyM06-HF100%non-localexchangeprovidesclosestavailableTdatashoweffectexistsalsoframeworksegazulenepentaazaphenalenenon-alternantpolycyclichydrocarbonspropertybroader119���eV62���eVthereforeextremelyimportantjudiciouslychoosecomputationalgeometriescomputingImpactStructureExcitationEnergiesS-TEnergyAsymmetricalSystemsInterestalgebraicdiagrammaticconstructionanti���aromaticcompoundseffectsinvertedorganiclight���emittingdiodesOLEDsenergytime���dependentdensitytheoryTD���DFT

Similar Articles

Cited By

No available data.