Ecosystem Service Trajectories in Restored Coastal Habitats.

Dana Lanceman, Mariana Mayer-Pinto, William Glamore
Author Information
  1. Dana Lanceman: Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, New South Wales, Australia. ORCID
  2. Mariana Mayer-Pinto: Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, New South Wales, Australia. ORCID
  3. William Glamore: Water Research Laboratory, School of Civil and Environmental Engineering, UNSW, Sydney, New South Wales, Australia.

Abstract

Ecosystem restoration is urgently needed to restore, maintain, or increase valued ecosystem services provided by natural habitats. However, the provision of services in restored habitats, in comparison to natural, undegraded habitats, and the time required for them to be generated, is uncertain. Here, for the first time in coastal (or to our knowledge, any) ecosystems, we systematically outline why and how to characterize pathways of ecosystem service recovery following restoration. Using real-world and theoretical examples, mainly from coastal habitats, we outline seven key components required to characterize ecosystem service trajectories. These components are the baseline rate and variability of ecosystem service provisioning, and the trend type, direction, rate, time to natural equivalence and variability of restored ecosystem service provisioning. These components provide novel insights into the development of ecosystem services and values over time, and their use can help in planning on-ground restoration projects and monitoring regimes, valuing ecosystem services, and determining restoration success.

Keywords

References

  1. Abbott, B. N., J. Wallace, D. M. Nicholas, F. Karim, and N. J. Waltham. 2020. ���Bund Removal to Re���Establish Tidal Flow, Remove Aquatic Weeds and Restore Coastal Wetland Services���North Queensland, Australia.��� PLoS One 15, no. 1: e0217531. https://doi.org/10.1371/journal.pone.0217531.
  2. Abbott, K. M., T. Elsey���Quirk, and R. D. Delaune. 2019. ���Factors Influencing Blue Carbon Accumulation Across a 32���Year Chronosequence of Created Coastal Marshes.��� Ecosphere 10, no. 8: e02828. https://doi.org/10.1002/ecs2.2828.
  3. Abelson, A., D. C. Reed, G. J. Edgar, et al. 2020. ���Challenges for Restoration of Coastal Marine Ecosystems in the Anthropocene.��� Frontiers in Marine Science 7: 4105. https://doi.org/10.3389/fmars.2020.544105.
  4. Barbier, E. B., S. D. Hacker, C. Kennedy, E. W. Koch, A. C. Stier, and B. R. Silliman. 2011. ���The Value of Estuarine and Coastal Ecosystem Services.��� Ecological Monographs 81, no. 2: 169���193. https://doi.org/10.1890/10���1510.1.
  5. Bayraktarov, E., M. I. Saunders, S. Abdullah, et al. 2016. ���The Cost and Feasibility of Marine Coastal Restoration.��� Ecological Applications 26, no. 4: 1055���1074. https://doi.org/10.1890/15���1077.
  6. Benayas, J. M. R., A. C. Newton, A. Diaz, and J. M. Bullock. 2009. ���Enhancement of Biodiversity and Ecosystem Services by Ecological Restoration: A Meta���Analysis.��� Science 325: 1121���1124. https://doi.org/10.1126/science.1172460.
  7. Bice, C. M., J. Huisman, M. E. Kimball, M. Mallen���Cooper, B. P. Zampatti, and B. M. Gillanders. 2023. ���Tidal Barriers and Fish ��� Impacts and Remediation in the Face of Increasing Demand for Freshwater and Climate Change.��� Estuarine, Coastal and Shelf Science 289: 108376. https://doi.org/10.1016/j.ecss.2023.108376.
  8. Boys, C., and T. Fowler. 2022. ���The Recovery of Hexham Swamp Following Floodgate Opening: A 19���Year Study of Fish and Crustaceans.��� Fisheries Final Report Series ��� No. 164.
  9. Breed, M. F., A. T. Cross, K. Wallace, et al. 2021. ���Ecosystem Restoration: A Public Health Intervention.��� EcoHealth 18, no. 3: 269���271. https://doi.org/10.1007/s10393���020���01480���1.
  10. Brierley, G. J., and K. A. Fryirs. 2015. ���The Use of Evolutionary Trajectories to Guide ���Moving Targets��� in the Management of River Futures.��� River Research and Applications 32, no. 5: 823���835. https://doi.org/10.1002/rra.2930.
  11. Browne, M., G. Fraser, and J. Snowball. 2018. ���Economic Evaluation of Wetland Restoration: A Systematic Review of the Literature.��� Restoration Ecology 26, no. 6: 1120���1126. https://doi.org/10.1111/rec.12889.
  12. Bullock, J. M., J. Aronson, A. C. Newton, R. F. Pywell, and J. M. Rey���Benayas. 2011. ���Restoration of Ecosystem Services and Biodiversity: Conflicts and Opportunities.��� Trends in Ecology & Evolution 26, no. 10: 541���549. https://doi.org/10.1016/j.tree.2011.06.011.
  13. Burden, A., R. A. Garbutt, C. D. Evans, D. L. Jones, and D. M. Cooper. 2013. ���Carbon Sequestration and Biogeochemical Cycling in a Saltmarsh Subject to Coastal Managed Realignment.��� Estuarine, Coastal and Shelf Science 120: 12���20. https://doi.org/10.1016/j.ecss.2013.01.014.
  14. Burkhard, B., F. Kroll, S. Nedkov, and F. M��ller. 2012. ���Mapping Ecosystem Service Supply, Demand and Budgets.��� Ecological Indicators 21: 17���29. https://doi.org/10.1016/j.ecolind.2011.06.019.
  15. Cadier, C., E. Bayraktarov, R. Piccolo, and M. F. Adame. 2020. ���Indicators of Coastal Wetlands Restoration Success: A Systematic Review.��� Frontiers in Marine Science 7: 220. https://doi.org/10.3389/fmars.2020.600220.
  16. Calder, R. S. D., C. Shi, S. A. Mason, L. P. Olander, and M. E. Borsuk. 2019. ���Forecasting Ecosystem Services to Guide Coastal Wetland Rehabilitation Decisions.��� Ecosystem Services 39: 101007. https://doi.org/10.1016/j.ecoser.2019.101007.
  17. Carlucci, M. B., P. H. S. Brancalion, R. R. Rodrigues, R. Loyola, and M. V. Cianciaruso. 2020. ���Functional Traits and Ecosystem Services in Ecological Restoration.��� Restoration Ecology 28, no. 6: 1372���1383. https://doi.org/10.1111/rec.13279.
  18. Castagno, K. A., N. K. Ganju, M. W. Beck, A. A. Bowden, and S. B. Scyphers. 2022. ���How Much Marsh Restoration Is Enough to Deliver Wave Attenuation Coastal Protection Benefits?��� Frontiers in Marine Science 8: 56670. https://doi.org/10.3389/fmars.2021.756670.
  19. Chomin���Virden, D. 2021. Carbon Storage of Restored Mangrove Forests in Biscayne Bay, Florida. Florida International University.
  20. Christie, H., G. S. Andersen, T. Bekkby, et al. 2019. ���Shifts Between Sugar Kelp and Turf Algae in Norway: Regime Shifts or Fluctuations Between Different Opportunistic Seaweed Species?��� Frontiers in Marine Science 6: 72. https://doi.org/10.3389/fmars.2019.00072.
  21. Clarke, P. J., and W. G. Allaway. 1993. ���The Regeneration Niche of the Grey Mangrove (Avicennia marina): Effects of Salinity, Light and Sediment Factors on Establishment, Growth and Survival in the Field.��� Oecologia 93: 548���556. https://doi.org/10.1007/BF00328964.
  22. Craft, C., P. Megonigal, S. Broome, et al. 2003. ���The Pace of Ecosystem Development of Constructed Spartina Alterniflora Marshes.��� Ecological Applications 13, no. 5: 1417���1432. https://doi.org/10.1890/02���5086.
  23. Duarte, C. M., A. Borja, J. Carstensen, M. Elliott, D. Krause���Jensen, and N. Marb��. 2015. ���Paradigms in the Recovery of Estuarine and Coastal Ecosystems.��� Estuaries and Coasts 38, no. 4: 1202���1212. https://doi.org/10.1007/s12237���013���9750���9.
  24. Dybiec, J. M., T. Ledford, S. Rinehart, C. Tatariw, B. Mortazavi, and J. A. Cherry. 2024. ���Evaluating Restoration Success Using Metric���Based Indicators of Ecosystem Recovery in Tidal Marshes Along the Northern Gulf of Mexico.��� Journal of Applied Ecology 62, no. 1: 155���168. https://doi.org/10.1111/1365���2664.14832.
  25. Eger, A. M., E. Marzinelli, P. Gribben, et al. 2020. ���Playing to the Positives: Using Synergies to Enhance Kelp Forest Restoration.��� Frontiers in Marine Science 7: 544. https://doi.org/10.3389/fmars.2020.00544.
  26. Eger, A. M., E. M. Marzinelli, R. Beas���Luna, et al. 2023. ���The Value of Ecosystem Services in Global Marine Kelp Forests.��� Nature Communications 14, no. 1: 1894. https://doi.org/10.1038/s41467���023���37385���0.
  27. Elliott, M., D. Burdon, K. L. Hemingway, and S. E. Apitz. 2007. ���Estuarine, Coastal and Marine Ecosystem Restoration: Confusing Management and Science ��� A Revision of Concepts.��� Estuarine, Coastal and Shelf Science 74, no. 3: 349���366. https://doi.org/10.1016/j.ecss.2007.05.034.
  28. Elliott, M., L. Mander, K. Mazik, et al. 2016. ���Ecoengineering With Ecohydrology: Successes and Failures in Estuarine Restoration.��� Estuarine, Coastal and Shelf Science 176: 12���35. https://doi.org/10.1016/j.ecss.2016.04.003.
  29. Feehan, C. J., S. P. Grace, and C. A. Narvaez. 2019. ���Ecological Feedbacks Stabilize a Turf���Dominated Ecosystem at the Southern Extent of Kelp Forests in the Northwest Atlantic.��� Scientific Reports 9, no. 1: 7078. https://doi.org/10.1038/s41598���019���43536���5.
  30. Ferraz, S., P. H. S. Brancalion, J. Guillemot, and P. Meli. 2020. ���On the Need to Differentiate the Temporal Trajectories of Ecosystem Structure and Functions in Restoration Programs.��� Tropical Conservation Science 13: 314. https://doi.org/10.1177/1940082920910314.
  31. Filbee���Dexter, K., and T. Wernberg. 2018. ���Rise of Turfs: A New Battlefront for Globally Declining Kelp Forests.��� Bioscience 68, no. 2: 64���76. https://doi.org/10.1093/biosci/bix147.
  32. Garrard, S. L., and N. J. Beaumont. 2014. ���The Effect of Ocean Acidification on Carbon Storage and Sequestration in Seagrass Beds; a Global and UK Context.��� Marine Pollution Bulletin 86, no. 1���2: 138���146. https://doi.org/10.1016/j.marpolbul.2014.07.032.
  33. Gerwing, T. G., M. M. Davies, J. Clements, et al. 2020. ���Do You Want to Breach an Embankment? Synthesis of the Literature and Practical Considerations for Breaching of Tidally Influenced Causeways and Dikes.��� Estuarine, Coastal and Shelf Science 245: 107024. https://doi.org/10.1016/j.ecss.2020.107024.
  34. Hagger, V., P. Stewart���Sinclair, R. A. Rossini, et al. 2024. ���Lessons Learned on the Feasibility of Coastal Wetland Restoration for Blue Carbon and Co���Benefits in Australia.��� Journal of Environmental Management 369: 122287. https://doi.org/10.1016/j.jenvman.2024.122287.
  35. Hashim, A. M., S. M. P. Catherine, and H. Takaijudin. 2013. ���Effectiveness of Mangrove Forests in Surface Wave Attenuation: A Review.��� Research Journal of Applied Sciences, Engineering and Technology 5, no. 18: 4483���4488.
  36. Henderson, B., and W. Glamore. 2024. ���Mangrove Extent Reflects Estuarine Typology and Lifecycle Events.��� Estuarine, Coastal and Shelf Science 304: 108813. https://doi.org/10.1016/j.ecss.2024.108813.
  37. Hoegh���Guldberg, O., P. J. Mumby, A. J. Hooten, et al. 2007. ���Coral Reefs Under Rapid Climate Change and Ocean Acidification.��� Science 318: 1737���1742.
  38. Holland, O. J., M. A. Young, C. D. H. Sherman, et al. 2021. ���Ocean Warming Threatens Key Trophic Interactions Supporting a Commercial Fishery in a Climate Change Hotspot.��� Global Change Biology 27, no. 24: 6498���6511. https://doi.org/10.1111/gcb.15889.
  39. Hua, F., L. A. Bruijnzeel, P. Meli, et al. 2022. ���The Biodiversity and Ecosystem Service Contributions and Trade���Offs of Forest Restoration Approaches.��� Science 376: 839���844.
  40. Jacotot, A., C. Marchand, and M. Allenbach. 2019. ���Increase in Growth and Alteration of C:N Ratios of Avicennia marina and Rhizophora stylosa Subject to Elevated CO2 Concentrations and Longer Tidal Flooding Duration.��� Frontiers in Ecology and Evolution 7: 98. https://doi.org/10.3389/fevo.2019.00098.
  41. Johnson, C. R., R. H. Chabot, M. P. Marzloff, and S. Wotherspoon. 2016. ���Knowing When (Not) to Attempt Ecological Restoration.��� Restoration Ecology 25, no. 1: 140���147. https://doi.org/10.1111/rec.12413.
  42. Joly, C. A. 2022. ���The Kunming���Montr��al Global Biodiversity Framework.��� Biota Neotropica 22, no. 4: e2022e001. https://doi.org/10.1590/1676���0611���bn���2022���e001.
  43. Jones, H. P., P. C. Jones, E. B. Barbier, et al. 2018. ���Restoration and Repair of Earth's Damaged Ecosystems.��� Proceedings of the Biological Sciences 285, no. 1873: 2577. https://doi.org/10.1098/rspb.2017.2577.
  44. Keith, D. A., J. R. Ferrer���Paris, E. Nicholson, and R. T. Kingsford. 2020. ���IUCN Global Ecosystem Typology 2.0: Descriptive Profiles for Biomes and Ecosystem Functional Groups.���
  45. Kitchingman, M. E., M. Sievers, S. Lopez���Marcano, and R. M. Connolly. 2022. ���Fish Use of Restored Mangroves Matches That in Natural Mangroves Regardless of Forest Age.��� Restoration Ecology 31, no. 1: e13806. https://doi.org/10.1111/rec.13806.
  46. Knox, R. L., E. E. Wohl, and R. R. Morrison. 2022. ���Levees Don't Protect, They Disconnect: A Critical Review of How Artificial Levees Impact Floodplain Functions.��� Science of the Total Environment 837: 155773. https://doi.org/10.1016/j.scitotenv.2022.155773.
  47. Koch, E. W., E. B. Barbier, B. R. Silliman, et al. 2009. ���Non���Linearity in Ecosystem Services: Temporal and Spatial Variability in Coastal Protection.��� Frontiers in Ecology and the Environment 7, no. 1: 29���37. https://doi.org/10.1890/080126.
  48. Kristensen, E. A., B. Kronvang, P. Wiberg���Larsen, et al. 2014. ���10���Years After the Largest River Restoration Project in Northern Europe: Hydromorphological Changes on Multiple Scales in River Skjern.��� Ecological Engineering 66: 141���149. https://doi.org/10.1016/j.ecoleng.2013.10.001.
  49. Lanceman, D., M. Sadat���Noori, T. Gaston, C. Drummond, and W. Glamore. 2022. ���Blue Carbon Ecosystem Monitoring Using Remote Sensing Reveals Wetland Restoration Pathways.��� Frontiers in Environmental Science 10: 4221. https://doi.org/10.3389/fenvs.2022.924221.
  50. Li, R., H. Zheng, P. O'Connor, et al. 2021. ���Time and Space Catch Up With Restoration Programs That Ignore Ecosystem Service Trade���Offs. Science.��� Advances 7: eabf8650. https://doi.org/10.1126/sciadv.abf8650.
  51. Lindborg, R., L. J. Gordon, R. Malinga, et al. 2017. ���How Spatial Scale Shapes the Generation and Management of Multiple Ecosystem Services.��� Ecosphere 8, no. 4: 1741. https://doi.org/10.1002/ecs2.1741.
  52. Liu, N., and Z. Ma. 2024. ���Ecological Restoration of Coastal Wetlands in China: Current Status and Suggestions.��� Biological Conservation 291: 110513. https://doi.org/10.1016/j.biocon.2024.110513.
  53. Lovelock, C. E., M. F. Adame, J. Bradley, et al. 2022. ���An Australian Blue Carbon Method to Estimate Climate Change Mitigation Benefits of Coastal Wetland Restoration.��� Restoration Ecology 31, no. 7: e13739. https://doi.org/10.1111/rec.13739.
  54. Luo, Z., O. J. Sun, and H. Xu. 2010. ���A Comparison of Species Composition and Stand Structure Between Planted and Natural Mangrove Forests in Shenzhen Bay, South China.��� Journal of Plant Ecology 3, no. 3: 165���174. https://doi.org/10.1093/jpe/rtq004.
  55. Maes, S. L., M. P. Perring, R. Cohen, et al. 2024. ���Explore Before You Restore: Incorporating Complex Systems Thinking in Ecosystem Restoration.��� Journal of Applied Ecology 61, no. 5: 922���939. https://doi.org/10.1111/1365���2664.14614.
  56. Martins, M. G., C. Hipolito, F. Parreira, M. A. Dionisio, and A. I. Neto. 2016. ���Differences in the Structure and Functioning of Two Communities: Frondose and Turf���Forming Macroalgal Dominated Habitats.��� Marine Environmental Research 116: 71���77. https://doi.org/10.1016/j.marenvres.2016.03.004.
  57. Mazzotta, M., J. Bousquin, W. Berry, et al. 2019. ���Evaluating the Ecosystem Services and Benefits of Wetland Restoration by Use of the Rapid Benefit Indicators Approach.��� Integrated Environmental Assessment and Management 15, no. 1: 148���159. https://doi.org/10.1002/ieam.4101.
  58. McConville, A., B. S. Law, and M. J. Mahony. 2013. ���Mangroves as Maternity Roosts for a Colony of the Rare East���Coast Free���Tailed Bat (Mormopterus norfolkensis) in South���Eastern Australia.��� Wildlife Research 40, no. 4: 318. https://doi.org/10.1071/wr12222.
  59. Miedema Brown, L., and M. Anand. 2022. ���Plant Functional Traits as Measures of Ecosystem Service Provision.��� Ecosphere 13, no. 2: 3930. https://doi.org/10.1002/ecs2.3930.
  60. Milanovi��, M., S. Knapp, P. Py��ek, and I. K��hn. 2020. ���Linking Traits of Invasive Plants With Ecosystem Services and Disservices.��� Ecosystem Services 42: 101072. https://doi.org/10.1016/j.ecoser.2020.101072.
  61. Miller, K. I., C. O. Blain, and N. T. Shears. 2022. ���Sea Urchin Removal as a Tool for Macroalgal Restoration: A Review on Removing ���the Spiny Enemies���.��� Frontiers in Marine Science 9: 1001. https://doi.org/10.3389/fmars.2022.831001.
  62. Morris, R. L., B. Fest, D. Stokes, C. Jenkins, and S. E. Swearer. 2023. ���The Coastal Protection and Blue Carbon Benefits of Hybrid Mangrove Living Shorelines.��� Journal of Environmental Management 331: 117310. https://doi.org/10.1016/j.jenvman.2023.117310.
  63. Noll, A., C. Mobilian, and C. Craft. 2019. ���Five Decades of Wetland Soil Development of a Constructed Tidal Salt Marsh, North Carolina, USA.��� Ecological Restoration 37, no. 3: 163���170. https://doi.org/10.3368/er.37.3.163.
  64. Olander, L. P., R. J. Johnston, H. Tallis, et al. 2018. ���Benefit Relevant Indicators: Ecosystem Services Measures That Link Ecological and Social Outcomes.��� Ecological Indicators 85: 1262���1272. https://doi.org/10.1016/j.ecolind.2017.12.001.
  65. Osland, M. J., L. C. Feher, A. C. Spivak, et al. 2020. ���Rapid Peat Development Beneath Created, Maturing Mangrove Forests: Ecosystem Changes Across a 25���Yr Chronosequence.��� Ecological Applications 30, no. 4: e02085. https://doi.org/10.1002/eap.2085.
  66. Palmer, M. A., J. B. Zedler, and D. A. Falk. 2016. Foundations in Restoration Ecology. Island Press.
  67. Proffitt, C. E., and D. J. Devlin. 2005. ���Long���Term Growth and Succession in Restored and Natural Mangrove Forests in Southwestern Florida.��� Wetlands Ecology and Management 13, no. 5: 531���551. https://doi.org/10.1007/s11273���004���2411���9.
  68. Raoult, V., T. F. Gaston, and M. D. Taylor. 2018. ���Habitat���Fishery Linkages in Two Major South���Eastern Australian Estuaries Show That the C4 Saltmarsh Plant Sporobolus virginicus Is a Significant Contributor to Fisheries Productivity.��� Hydrobiologia 811, no. 1: 221���238. https://doi.org/10.1007/s10750���017���3490���y.
  69. Ray, R., R. Suwa, T. Miyajima, et al. 2023. ���Sedimentary Blue Carbon Dynamics Based on Chronosequential Observations in a Tropical Restored Mangrove Forest.��� Biogeosciences 20, no. 4: 911���928. https://doi.org/10.5194/bg���20���911���2023.
  70. Rogers, A., A. R. Harborne, C. J. Brown, et al. 2015. ���Anticipative Management for Coral Reef Ecosystem Services in the 21st Century.��� Global Change Biology 21, no. 2: 504���514. https://doi.org/10.1111/gcb.12725.
  71. Rogers, K., N. Saintilan, and C. Copeland. 2013a. ���Managed Retreat of Saline Coastal Wetlands: Challenges and Opportunities Identified From the Hunter River Estuary, Australia.��� Estuaries and Coasts 37, no. 1: 67���78. https://doi.org/10.1007/s12237���013���9664���6.
  72. Rogers, K., N. Saintilan, A. J. Howe, and J. F. Rodr��guez. 2013b. ���Sedimentation, Elevation and Marsh Evolution in a Southeastern Australian Estuary During Changing Climatic Conditions.��� Estuarine, Coastal and Shelf Science 133: 172���181. https://doi.org/10.1016/j.ecss.2013.08.025.
  73. Sadat���Noori, M., C. Rankin, D. Rayner, et al. 2021. ���Coastal Wetlands Can Be Saved From Sea Level Rise by Recreating Past Tidal Regimes.��� Scientific Reports 11, no. 1: 1196. https://doi.org/10.1038/s41598���021���80977���3.
  74. Saunders, M. I., C. Doropoulos, E. Bayraktarov, et al. 2020. ���Bright Spots in Coastal Marine Ecosystem Restoration.��� Current Biology 30, no. 24: R1500���R1510. https://doi.org/10.1016/j.cub.2020.10.056.
  75. Schoutens, K., M. Heuner, V. Minden, et al. 2019. ���How Effective Are Tidal Marshes as Nature���Based Shoreline Protection Throughout Seasons?��� Limnology and Oceanography 64, no. 4: 1750���1762. https://doi.org/10.1002/lno.11149.
  76. Seppelt, R., C. F. Dormann, F. V. Eppink, S. Lautenbach, and S. Schmidt. 2011. ���A Quantitative Review of Ecosystem Service Studies: Approaches, Shortcomings and the Road Ahead.��� Journal of Applied Ecology 48, no. 3: 630���636. https://doi.org/10.1111/j.1365���2664.2010.01952.x.
  77. Sheaves, M., N. J. Waltham, C. Benham, et al. 2021. ���Restoration of Marine Ecosystems: Understanding Possible Futures for Optimal Outcomes.��� Science of the Total Environment 796: 148845. https://doi.org/10.1016/j.scitotenv.2021.148845.
  78. Siegel, K. J., K. C. Cavanaugh, and L. E. Dee. 2024. ���Balancing Multiple Management Objectives as Climate Change Transforms Ecosystems.��� Trends in Ecology & Evolution 39, no. 4: 381���395. https://doi.org/10.1016/j.tree.2023.11.003.
  79. Smale, D. A., M. T. Burrows, P. Moore, N. O'Connor, and S. J. Hawkins. 2013. ���Threats and Knowledge Gaps for Ecosystem Services Provided by Kelp Forests: A Northeast Atlantic Perspective.��� Ecology and Evolution 3, no. 11: 4016���4038. https://doi.org/10.1002/ece3.774.
  80. Standards Reference Group SERA. 2021. ���National Standards for the Practice of Ecological Restoration in Australia.��� Edition 2.2.
  81. Sutherland, I. J., E. M. Bennett, and S. E. Gergel. 2016. ���Recovery Trends for Multiple Ecosystem Services Reveal Non���Linear Responses and Long���Term Tradeoffs From Temperate Forest Harvesting.��� Forest Ecology and Management 374: 61���70. https://doi.org/10.1016/j.foreco.2016.04.037.
  82. Tatariw, C., B. Mortazavi, T. C. Ledford, et al. 2020. ���Nitrate Reduction Capacity Is Limited by Belowground Plant Recovery in a 32���Year���Old Created Salt Marsh.��� Restoration Ecology 29, no. 1: e13300. https://doi.org/10.1111/rec.13300.
  83. Thura, K., O. Serrano, J. Gu, et al. 2022. ���Mangrove Restoration Built Soil Organic Carbon Stocks Over Six Decades: A Chronosequence Study.��� Journal of Soils and Sediments 23, no. 3: 1193���1203. https://doi.org/10.1007/s11368���022���03418���2.
  84. Verg��s, A., E. McCosker, M. Mayer���Pinto, et al. 2019. ���Tropicalisation of Temperate Reefs: Implications for Ecosystem Functions and Management Actions.��� Functional Ecology 33, no. 6: 1000���1013. https://doi.org/10.1111/1365���2435.13310.
  85. Waltham, N. J., P. Cartwright, K. Motson, M. Sheaves, and M. Ronan. 2024. ���Coastal Wetland Restoration: Case Studies From Great Barrier Reef Catchments.��� In Oceanographic Processes of Coral Reefs: Physical and Biological Links in the Great Barrier Reef, edited by E. Wolanski and M. J. Kingsford. CRC Press.
  86. Weston, N. B. 2013. ���Declining Sediments and Rising Seas: An Unfortunate Convergence for Tidal Wetlands.��� Estuaries and Coasts 37, no. 1: 1���23. https://doi.org/10.1007/s12237���013���9654���8.
  87. Wortley, L., J.���M. Hero, and M. Howes. 2013. ���Evaluating Ecological Restoration Success: A Review of the Literature.��� Restoration Ecology 21, no. 5: 537���543. https://doi.org/10.1111/rec.12028.
  88. Xu, Z., and J. Peng. 2022. ���Ecosystem Services���Based Decision���Making: A Bridge From Science to Practice.��� Environmental Science & Policy 135: 6���15. https://doi.org/10.1016/j.envsci.2022.04.010.
  89. Yang, W., Y. Jin, T. Sun, Z. Yang, Y. Cai, and Y. Yi. 2018. ���Trade���Offs Among Ecosystem Services in Coastal Wetlands Under the Effects of Reclamation Activities.��� Ecological Indicators 92: 354���366. https://doi.org/10.1016/j.ecolind.2017.05.005.
  90. Zedler, J. B., and J. C. Callaway. 2002. ���Tracking Wetland Restoration: Do Mitigation Sites Follow Desired Trajectories?��� Restoration Ecology 7, no. 1: 69���73. https://doi.org/10.1046/j.1526���100X.1999.07108.x.
  91. Zhao, Q., J. Bai, L. Huang, B. Gu, Q. Lu, and Z. Gao. 2016. ���A Review of Methodologies and Success Indicators for Coastal Wetland Restoration.��� Ecological Indicators 60: 442���452. https://doi.org/10.1016/j.ecolind.2015.07.003.

MeSH Term

Ecosystem
Conservation of Natural Resources

Word Cloud

Created with Highcharts 10.0.0ecosystemrestorationserviceserviceshabitatstimenaturalcomponentsEcosystemrestoredrequiredcoastaloutlinecharacterizeratevariabilityprovisioningurgentlyneededrestoremaintainincreasevaluedprovidedHoweverprovisioncomparisonundegradedgenerateduncertainfirstknowledgeecosystemssystematicallypathwaysrecoveryfollowingUsingreal-worldtheoreticalexamplesmainlysevenkeytrajectoriesbaselinetrendtypedirectionequivalenceprovidenovelinsightsdevelopmentvaluesusecanhelpplanningon-groundprojectsmonitoringregimesvaluingdeterminingsuccessServiceTrajectoriesRestoredCoastalHabitatsclimatechangefunctionhysteresisintertidalmarinerehabilitationtrajectorywetland

Similar Articles

Cited By

No available data.