Bayesian Estimation of Generalized Log-Linear Poisson Item Response Models for Fluency Scores Using brms and Stan.

Nils Myszkowski, Martin Storme
Author Information
  1. Nils Myszkowski: Department of Psychology, Pace University, New York, NY 10004, USA. ORCID
  2. Martin Storme: IESEG School of Management, Universit�� de Lille, CNRS, UMR 9221-LEM-Lille Economie Management, 59000 Lille, France. ORCID

Abstract

Divergent thinking tests are popular instruments to measure a person's creativity. They often involve scoring fluency, which refers to the count of ideas generated in response to a prompt. The two-parameter Poisson counts model (2PPCM), a generalization of the Rasch Poisson counts model (RPCM) that includes discrimination parameters, has been proposed as a useful approach to analyze fluency scores in creativity tasks, but its estimation was presented in the context of generalized structural equation modeling (GSEM) commercial software (e.g., Mplus). Here, we show how the 2PPCM (and RPCM) can be estimated in a Bayesian multilevel regression framework and interpreted using the R package brms, which provides an interface for the Stan programming language. We illustrate this using an example dataset, which contains fluency scores for three tasks and 202 participants. We discuss model specification, estimation, convergence, fit and comparisons. Furthermore, we provide instructions on plotting item response functions, comparing models, calculating overdispersion and reliability, as well as extracting factor scores.

Keywords

References

  1. Br J Educ Psychol. 2020 Sep;90(3):683-699 [PMID: 31660586]
  2. Res Q Exerc Sport. 1990 Jun;61(2):162-8 [PMID: 2094927]
  3. Stat Methods Med Res. 2016 Apr;25(2):902-16 [PMID: 23376964]
  4. Behav Res Methods. 2016 Jun;48(2):742-55 [PMID: 26174711]
  5. Appl Psychol Meas. 2018 Jul;42(5):401-402 [PMID: 30034057]
  6. Front Psychol. 2020 Jun 10;11:945 [PMID: 32587542]
  7. J Intell. 2024 Jan 15;12(1): [PMID: 38248905]
  8. Psychol Rep. 2019 Oct;122(5):1967-1994 [PMID: 30185118]
  9. Br J Math Stat Psychol. 2020 Nov;73 Suppl 1:32-50 [PMID: 31418457]
  10. J Intell. 2020 Feb 04;8(1): [PMID: 32033073]
  11. Psychometrika. 2021 Jun;86(2):378-403 [PMID: 33939062]
  12. J Stat Softw. 2017;76: [PMID: 36568334]
  13. Br J Math Stat Psychol. 2022 Nov;75(3):411-443 [PMID: 35678959]

Word Cloud

Created with Highcharts 10.0.0fluencycreativityresponsePoissonmodelscoresestimationBayesianthinkingcounts2PPCMRPCMtasksusingbrmsStanitemDivergenttestspopularinstrumentsmeasureperson'softeninvolvescoringreferscountideasgeneratedprompttwo-parametergeneralizationRaschincludesdiscriminationparametersproposedusefulapproachanalyzepresentedcontextgeneralizedstructuralequationmodelingGSEMcommercialsoftwareegMplusshowcanestimatedmultilevelregressionframeworkinterpretedRpackageprovidesinterfaceprogramminglanguageillustrateexampledatasetcontainsthree202participantsdiscussspecificationconvergencefitcomparisonsFurthermoreprovideinstructionsplottingfunctionscomparingmodelscalculatingoverdispersionreliabilitywellextractingfactorEstimationGeneralizedLog-LinearItemResponseModelsFluencyScoresUsingdivergenttheorypsychometrics

Similar Articles

Cited By

No available data.