Neurobiological Alterations Induced by SARS-CoV-2: Insights from Variant-Specific Host Gene Expression Patterns in hACE2-Expressing Mice.

Hamid Reza Jahantigh, Amany Elsharkawy, Anchala Guglani, Komal Arora, Lila D Patterson, Mukesh Kumar
Author Information
  1. Hamid Reza Jahantigh: Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA.
  2. Amany Elsharkawy: Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA. ORCID
  3. Anchala Guglani: Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA.
  4. Komal Arora: Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA.
  5. Lila D Patterson: Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA. ORCID
  6. Mukesh Kumar: Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA. ORCID

Abstract

Since the onset of the COVID-19 pandemic, various severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants have emerged. Although the primary site of SARS-CoV-2 infection is the lungs, it can also affect the brain and induce neurological symptoms. However, the specific effects of different variants on the brain remain unclear. In this study, a whole-transcriptome analysis was conducted using the brain tissues of K18-hACE2 mice infected with the ancestral B.1 (Wuhan) variant and with major SARS-CoV-2 variants of concern, including B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta) and B.1.529 (Omicron). After sequencing, differential gene expression, gene ontology (GO) and genome pathway enrichment analyses were performed. An Immune Cell Abundance Identifier (ImmuCellAI) was used to identify the abundance of different cell populations. Additionally, RT-qPCR was used to validate the RNA-seq data. The viral load and hierarchical clustering analyses divided the samples into two different clusters with notable differences in gene expression at day 6 post-infection for all variants compared to the control group. GO and the Kyoto Encyclopedia of genes and genomes enrichment analyses revealed similar patterns of pathway enrichment for different variants. ImmuCellAI revealed the changes in immune cell populations, including the decrease in CD4 T and B cell proportions and the increase in CD8 T and dendritic cell proportions. A co-expression network analysis revealed that some genes, such as , interleukin- () and tumor necrosis factor alpha (), were dysregulated in all variants. A RT-qPCR analysis for , and further validated the RNA-seq analysis. In conclusion, this study provides, for the first time, an extensive transcriptome analysis of a K18-hACE2 mouse brain after infection with major SARS-CoV-2 variants.

Keywords

References

  1. PeerJ. 2018 Jul 02;6:e5180 [PMID: 30002985]
  2. Front Immunol. 2022 Sep 30;13:1016108 [PMID: 36248817]
  3. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  4. BMC Immunol. 2016 Jun 02;17(1):13 [PMID: 27251638]
  5. Front Physiol. 2021 Apr 27;12:652799 [PMID: 33995121]
  6. Dis Model Mech. 2022 Nov 1;15(11): [PMID: 36222118]
  7. Pathogens. 2020 Jul 06;9(7): [PMID: 32640525]
  8. Nat Commun. 2022 Aug 16;13(1):4827 [PMID: 35974106]
  9. Front Immunol. 2020 Dec 15;11:596631 [PMID: 33384690]
  10. Emerg Microbes Infect. 2022 Dec;11(1):2383-2392 [PMID: 36069511]
  11. BMC Infect Dis. 2021 Jul 1;21(1):631 [PMID: 34210280]
  12. BMC Med. 2022 Feb 4;20(1):50 [PMID: 35114994]
  13. Comput Biol Med. 2022 Aug;147:105684 [PMID: 35687925]
  14. Cells. 2021 Feb 13;10(2): [PMID: 33668514]
  15. Viruses. 2024 Apr 26;16(5): [PMID: 38793566]
  16. Nat Commun. 2021 Nov 12;12(1):6559 [PMID: 34772941]
  17. BMC Infect Dis. 2023 Nov 28;23(1):838 [PMID: 38017395]
  18. Sci Rep. 2016 May 23;6:26350 [PMID: 27211830]
  19. Front Immunol. 2024 Sep 26;15:1435170 [PMID: 39391317]
  20. Vaccines (Basel). 2021 Apr 29;9(5): [PMID: 33946736]
  21. BMC Neurosci. 2022 Jul 6;23(1):43 [PMID: 35794518]
  22. Viruses. 2022 May 25;14(6): [PMID: 35746611]
  23. Acta Pharmacol Sin. 2020 Sep;41(9):1141-1149 [PMID: 32747721]
  24. Comput Struct Biotechnol J. 2021;19:976-988 [PMID: 33558827]
  25. Bioinformatics. 2022 Jan 12;38(3):785-791 [PMID: 34636837]
  26. Cancer Med. 2020 Aug;9(16):5960-5975 [PMID: 32592319]
  27. Nat Biotechnol. 2015 Mar;33(3):290-5 [PMID: 25690850]
  28. J Neuroinflammation. 2023 Aug 3;20(1):184 [PMID: 37537664]
  29. Front Immunol. 2021 Nov 05;12:739918 [PMID: 34804020]
  30. Sci Rep. 2016 Aug 22;6:31758 [PMID: 27545311]
  31. J Neuroinflammation. 2022 Jun 15;19(1):149 [PMID: 35705998]
  32. Nature. 2021 Jan;589(7843):603-607 [PMID: 33166988]
  33. Front Cell Dev Biol. 2021 Mar 29;9:645593 [PMID: 33855023]
  34. Front Immunol. 2020 May 01;11:827 [PMID: 32425950]
  35. Viruses. 2020 Mar 27;12(4): [PMID: 32230900]
  36. Front Med (Lausanne). 2021 Nov 24;8:745789 [PMID: 34901061]
  37. Methods Mol Biol. 2021;2284:367-392 [PMID: 33835453]
  38. PLoS Pathog. 2023 Jun 13;19(6):e1011432 [PMID: 37311004]
  39. Front Microbiol. 2022 May 04;13:840757 [PMID: 35602059]
  40. Front Psychiatry. 2020 Aug 21;11:860 [PMID: 32973590]
  41. Methods Mol Biol. 2011;696:291-303 [PMID: 21063955]
  42. Front Immunol. 2022 Oct 27;13:950666 [PMID: 36389747]
  43. J Cell Mol Med. 2023 Jun;27(11):1443-1464 [PMID: 37203288]
  44. Biomol Concepts. 2024 Jun 14;15(1): [PMID: 38872399]
  45. Elife. 2023 May 26;12: [PMID: 37233729]
  46. Sci Rep. 2021 Jan 14;11(1):1331 [PMID: 33446695]
  47. Pathogens. 2022 Feb 17;11(2): [PMID: 35215199]
  48. Int Immunopharmacol. 2023 Apr;117:109968 [PMID: 37012880]
  49. Mol Neurodegener. 2022 Jan 9;17(1):5 [PMID: 35000600]

MeSH Term

Animals
SARS-CoV-2
COVID-19
Mice
Brain
Angiotensin-Converting Enzyme 2
Viral Load
Gene Expression Profiling
Transcriptome
Humans
Disease Models, Animal
Interleukin-6

Chemicals

Angiotensin-Converting Enzyme 2
Interleukin-6

Word Cloud

Created with Highcharts 10.0.0variantsB1SARS-CoV-2analysisbraindifferentcellgeneenrichmentanalysesrevealedinfectionstudyK18-hACE2majorconcernincludingsequencingexpressionGOpathwayImmuCellAIusedpopulationsRT-qPCRRNA-seqgenesTproportionsSinceonsetCOVID-19pandemicvarioussevereacuterespiratorysyndromecoronavirus-2emergedAlthoughprimarysitelungscanalsoaffectinduceneurologicalsymptomsHoweverspecificeffectsremainunclearwhole-transcriptomeconductedusingtissuesmiceinfectedancestralWuhanvariant7Alpha351Beta6172Delta529OmicrondifferentialontologygenomeperformedImmuneCellAbundanceIdentifieridentifyabundanceAdditionallyvalidatedataviralloadhierarchicalclusteringdividedsamplestwoclustersnotabledifferencesday6post-infectioncomparedcontrolgroupKyotoEncyclopediagenomessimilarpatternschangesimmunedecreaseCD4increaseCD8dendriticco-expressionnetworkinterleukin-tumornecrosisfactoralphadysregulatedvalidatedconclusionprovidesfirsttimeextensivetranscriptomemouseNeurobiologicalAlterationsInducedSARS-CoV-2:InsightsVariant-SpecificHostGeneExpressionPatternshACE2-ExpressingMiceRNAneuroinflammationomicron

Similar Articles

Cited By