Leaf Micromorphological Characteristics of Korean Rush and Their Taxonomic Implications Based on Microscopic Analysis.

Young-Min Choi, Bokyung Choi, Changyoung Lee, Jin-Hyub Paik, Tae-Soo Jang
Author Information
  1. Young-Min Choi: Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea. ORCID
  2. Bokyung Choi: Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea. ORCID
  3. Changyoung Lee: International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.
  4. Jin-Hyub Paik: International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.
  5. Tae-Soo Jang: Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea. ORCID

Abstract

The genus Juncus L., comprising approximately 310 species, is a perennial herbaceous plant with the highest species diversity among Juncaceae. Although external leaf morphological and anatomical characteristics were used for taxonomic delimitation of Korean Juncus taxa, the micromorphological structure of Juncus is not comprehensively described. Our main objective was to determine whether leaf micromorphological comparisons among the studied Korean Juncus taxa could provide taxonomically informative characteristics. Korean rushes possessed both unifacial and bifacial leaves, although the patterns of cell outlines on the abaxial surfaces of cataphyll and cauline leaves and stems were similar. Leaf and stem epidermal cells were irregularly arranged and exhibited rectangular, rhomboidal, and polygonal shapes. Striations on epidermal cells are common in almost all species of the genus Juncus; however, scaly epicuticular wax is found only in J. setchuensis. The stomatal complexes of the studied Korean Juncus taxa were uniformly paracytic (stomata surrounded by two subsidiary cells), regardless of their occurrence in cataphyll and cauline leaves or on the stem surface. Guard cell length could be important taxonomic characters in Korean Juncus taxa, in accordance with traditional taxonomy, which distinguishes the two subgenera based on morphological characters. Differences in guard cell length and stomatal density were also influenced by external environmental factors but were not clearly correlated with variations in ploidy levels.

Keywords

References

  1. Abdulkareem, K. A., and O. T. Mustapha. 2016. ���Assessment of the Diversity of Leaf Epidermal Traits of Dipcadi filamentosum Medik Among Different Co���Geographical Regions in Nigeria.��� Journal of Agricultural Sciences 11, no. 2: 118���129.
  2. Adebowale, A., Y. Naidoo, J. Lamb, and A. Nicholas. 2014. ���Comparative Foliar Epidermal Micromorphology of Southern African Strychnos L. (Loganiaceae): Taxonomic, Ecological and Cytological Considerations.��� Plant Systematics and Evolution 300: 127���138.
  3. Ali, M., S. Bahadur, A. Hussain, et al. 2020. ���Foliar Epidermal Micromorphology and Its Taxonomic Significance in Polygonatum (Asparagaceae) Using Scanning Electron Microscopy.��� Microscopy Research and Technique 83, no. 11: 1381���1390.
  4. Ap��stolo, N. M., A. L. Luna, and G. E. Yormann. 2022. ���Morpho���Anatomy of Bambusa multiplex, B. Tuldoides and B. vulgaris cv. Vittata Culm Leaves (Poaceae ��� Bambusoideae ��� Bambuseae).��� Flora 297: 152169.
  5. Barthlott, W., C. Neinhuis, D. Cutler, et al. 1998. ���Classification and Terminology of Plant Epicuticular Waxes.��� Botanical Journal of the Linnean Society 126, no. 3: 237���260.
  6. Beaulieu, J. M., I. J. Leitch, S. Patel, A. Pendharkar, and C. A. Knight. 2008. ���Genome Size Is a Strong Predictor of Cell Size and Stomatal Density in Angiosperms.��� New Phytologist 179, no. 4: 975���986.
  7. Bucher, S. F., K. Auerswald, C. Gr��n���Wenzel, S. I. Higgins, G. J. Jorge, and C. R��mermann. 2017. ���Stomatal Traits Relate to Habitat Preferences of Herbaceous Species in a Temperate Climate.��� Flora 229: 107���115.
  8. Byun, H.���J., and T.���S. Jang. 2023. ���Comprehensive Leaf and Pistil Micromorphology and Its Taxonomic Value in the Korean Luzula Species.��� Flora 305: 152327.
  9. Chae, Y. O. 1983. ���A Study of the Genus Luzula in Korea.��� Korean Journal of Plant Taxonomy 13, no. 1: 9���25.
  10. Chao, C.���T., H.���Y. Tzeng, and Y.���H. Tseng. 2022. ���Leaf Epidermal Morphology of Asparagaceae of Taiwan and Its Systematic Significance.��� Microscopy Research and Technique 85, no. 6: 2162���2180.
  11. Charles, A. K., and D. A. David. 2003. ���Evolution and Plasticity of Photosynthetic Thermal Tolerance, Specific Leaf Area and Leaf Size: Congeneric Species From Desert and Coastal Environments.��� New Phytologist 160, no. 2: 337���347.
  12. Choi, B., Y.���E. Ahn, and T.���S. Jang. 2022. ���Implications of Foliar Epidermal Micromorphology Using Light and Scanning Electron Microscopy: A Useful Tool in Taxonomy of Korean Irises.��� Microscopy Research and Technique 85, no. 7: 2549���2557.
  13. Choi, B., Y. Hwang, S. A. M. McAdam, and T.���S. Jang. 2024. ���Comparative Microscopic Investigations of Leaf Epidermis in Four Ajuga Species From Korea.��� Microscopy Research and Technique 87, no. 3: 434���445.
  14. Choi, B., S. Y. Kim, and T. S. Jang. 2020. ���Micromorphological and Cytological Comparisons Between Youngia Japonica and Youngia Longiflora Using Light and Scanning Electron Microscopy.��� Microscopy Research and Technique 83, no. 12: 1456���1463.
  15. Choi, Y.���M., B. Choi, and T.���S. Jang. 2022. ���New Chromosome Counts in Juncus (Juncaceae) Taxa From Korea.��� Cytologia 87, no. 3: 221���225.
  16. Clugston, J. A. R., C. E. Jeffree, and R. R. Mill. 2017. ���Do Environmental Factors Affect the Taxonomic Reliability of Leaf Cuticular Micromorphological Characters? A Case Study in Podocarpaceae.��� Edinburgh Journal of Botany 74, no. 3: 299���343.
  17. Croxdale, J. L. 2000. ���Stomatal Patterning in Angiosperms.��� American Journal of Botany 87, no. 8: 1069���1080.
  18. Dani, M., ��. Farkas, K. Cseke, R. Filep, and A. J. Kov��cs. 2014. ���Leaf Epidermal Characteristics and Genetic Variability in Central European Populations of Broad���Leaved Festuca L. Taxa.��� Plant Systematics and Evolution 300: 431���451.
  19. Das, P., V. Chettri, S. Ghosh, and C. Ghosh. 2023. ���Micromorphological Studies of the Leaf and Stem of Camellia sinensis (L.) Kuntze With Reference to Their Taxonomic Significance.��� Microscopy Research and Technique 86, no. 4: 465���472.
  20. Dickison, W. 2000. Integrative Plant Anatomy. San Diego: Harcourt Academic Press.
  21. Dilcher, D. L. 1974. ���Approaches to the Identification of Angiosperm Leaf Remains.��� Botanical Review 40, no. 1: 1���157.
  22. Dr��bkov��, L. Z. 2013. ���A Survey of Karyological Phenomena in the Juncaceae With Emphasis on Chromosome Number Variation and Evolution.��� Botanical Review 79: 401���446.
  23. Drake, P. L., R. H. Froend, and P. J. Franks. 2013. ���Smaller, Faster Stomata: Scaling of Stomatal Size, Rate of Response, and Stomatal Conductance.��� Journal of Experimental Botany 64, no. 2: 495���505.
  24. Fern��ndez���Carvajal, A. M. d. C., R. Garc��a, G. D��az, and E. Tom��s. 1989. ���Clave para la identificaci��n de las especies ib��ricas del g��nero Juncus L. basada en caracteres anat��micos.��� Acta Botanica Malacitana 14: 89���104.
  25. Fortini, P., G. Antonecchia, P. Di Marzio, L. Maiuro, and V. Viscosi. 2015. ���Role of Micromorphological Leaf Traits and Molecular Data in Taxonomy of Three Sympatric White Oak Species and Their Hybrids (Quercus L.).��� Plant Biosystems 149, no. 3: 546���558.
  26. Franks, P. J., and D. J. Beerling. 2009. ���Maximum Leaf Conductance Driven by CO2 Effects on Stomatal Size and Density Over Geologic Time.��� Proceedings of the National Academy of Sciences, USA 106, no. 25: 10343���10347.
  27. Gifford, E., and A. Foster. 1989. Morphology and Evolution of Vascular Plants. New York: Freeman.
  28. Hodgson, J. G., M. Sharafi, A. Jalili, et al. 2010. ���Stomatal vs. Genome Size in Angiosperms: The Somatic Tail Wagging the Genomic Dog?��� Annals of Botany 105, no. 4: 573���584.
  29. Jang, C. S. 2016. A Systematic Study of the Genus Juncus L. (Juncaceae) in Northeastern Asia. Ph.D. dissertation., 144. Cheongju: Chungbuk National University.
  30. Jang, C. S., and B. U. Oh. 2016. ���A Taxonomic Study of Korean Juncus Based on the Anatomical Characters.��� Korean Journal of Plant Taxonomy 46, no. 4: 392���404.
  31. Kerstiens, G. 1996. ���Signaling Across the Divide: A Wider Perspective of Cuticular Structure���Function Relationships.��� Trends in Plant Science 1, no. 4: 125���129.
  32. Kim, H., B. Choi, C. Lee, S. A. M. McAdam, J.���H. Paik, and T.���S. Jang. 2021. ���Micromorphological Differentiation of Korean Disporum Species Using Light and Scanning Electron Microscopy.��� Microscopy Research and Technique 84, no. 11: 2614���2624.
  33. Kim, H., B. Choi, C. Lee, et al. 2023. ���Does the Evolution of Micromorphology Accompany Chromosomal Changes on Dysploid and Polyploid Levels in the Barnardia Japonica Complex (Hyacinthaceae)?��� BMC Plant Biology 23: 485.
  34. Kim, S. M., and S. T. Kim. 2013. ���Diagnostic Characters of Juncus (Juncaceae) Species in Korea.��� Korean Journal of Plant Taxonomy 43, no. 3: 196���207.
  35. Kirschner, J. 2002a. Juncaceae. 1. Rostkovia to Luzula. Species Plantarum: Flora of the World, Part 6. Canberra: Australian Biological Resources Study.
  36. Kirschner, J. 2002b. Juncaceae. 2. Juncus Subg. Juncus. Species Plantarum: Flora of the World, Part 7. Canberra: Australian Biological Resources Study.
  37. Kirschner, J. 2002c. Juncaceae. 3. Juncus Subg. Agathryon. Species Plantarum: Flora of the World, part 8. Canberra: Australian Biological Resources Study.
  38. Kong, M.���J., and S.���P. Hong. 2019. ���Leaf Micromorphology of the Persicaria Sect. Cephalophilon (Polygonaceae) and Its Systematic Re���Evaluation.��� Phytotaxa 391, no. 3: 167���184.
  39. Korea National Arboretum. 2019. Illustrated Juncaceae, Eriocaulaceae. Korea National Arboretum, Pocheon: Typhaceae of Korea.
  40. Kudo, N., and Y. Kimura. 2002. ���Nuclear DNA Endoduplication During Petal Development in Cabbage: Relationship Between Ploidy Levels and Cell Size.��� Journal of Experimental Botany 53, no. 371: 1017���1023.
  41. Leandro, T. D., V. L. Scatena, and L. G. Clark. 2020. ���Comparative Leaf Blade Anatomy and Micromorphology in the Systematics and Phylogeny of Bambusoideae (Poaceae: Poales).��� Botanical Journal of the Linnean Society 192, no. 1: 165���183.
  42. Lima, J. F., K. R. B. Leite, L. G. Clark, and P. R. de Oliveira. 2020. ���Leaf Micromorphology in Poaceae Subtribe Olyrinae (Bambusoideae) and Its Systematic Implications.��� Botanical Journal of the Linnean Society 192, no. 1: 184���207.
  43. Lin, C. Y., and D.���Y. Tan. 2015. ���The Taxonomic Significance of Leaf Epidermal Micromorphological Characters in Distinguishing 43 Species of Allium L. (Amaryllidaceae Central Asia).��� Pakistan Journal of Botany 47, no. 5: 1979���1988.
  44. Liu, Y., X. Li, G. Chen, M. Li, M. Liu, and D. Liu. 2015. ���Epidermal Micromorphology and Mesophyll Structure of Populus Euphratica Heteromorphic Leaves at Different Developmental Stages.��� PLoS One 10, no. 9: e0137701.
  45. Melaragno, J. E., B. Mehrotra, and A. W. Coleman. 1993. ���Relationship Between Endopolyploidy and Cell Size in Epidermal Tissue of Arabidopsis.��� Plant Cell 5, no. 11: 1661���1668.
  46. Min, B. M. 1998. ���Vegetation on the West Coast of Korea.��� Ocean and Polar Research 20: 167���178. (in Korean).
  47. Moon, H.���K., S.���P. Hong, E. Smets, and S. Huysmans. 2009. ���Phylogenetic Significance of Leaf Micromorphology and Anatomy in the Tribe Mentheae (Nepetoideae: Lamiaceae).��� Botanical Journal of the Linnean Society 160, no. 2: 211���231.
  48. Mowforth, M. A., and J. P. Grime. 1989. ���Intra���Population Variation in Nuclear DNA Amount, Cell Size, and Growth Rate in Poa annua L.��� Functional Ecology 3, no. 3: 289���295.
  49. Nishida, S., and H. van der Werff. 2014. ���Do Cuticle Characters Support the Recognition of Alseodaphne, Nothaphoebe, and Dehaasia as Distinct Genera?��� Reinwardtia 14, no. 1: 53���66.
  50. Retamales, H. A., and T. Scharaschkin. 2015. ���Comparative Leaf Anatomy and Micromorphology of the Chilean Myrtaceae: Taxonomic and Ecological Implications.��� Flora 217: 138���154.
  51. Rudall, P. J., E. D. Chen, and E. Cullen. 2017. ���Evolution and Development of Monocot Stomata.��� American Journal of Botany 104, no. 8: 1122���1141.
  52. Sadia, H., M. Zafar, M. Ahmad, et al. 2020. ���Foliar Epidermal Anatomy of Some Selected Wild Edible Fruits of Pakistan Using Light Microscopy and Scanning Electron Microscopy.��� Microscopy Research and Technique 83, no. 3: 259���267.
  53. Sevik, H., M. Cetin, H. B. Ozel, A. Erbek, and I. Z. Cetin. 2021. ���The Effect of Climate on Leaf Micromorphological Characteristics in Some Broad���Leaved Species.��� Environment, Development and Sustainability 23: 6395���6407.
  54. Shim, H. B., W. B. Cho, and B. H. Choi. 2009. ���Distribution of Halophytes in Coastal Salt Marsh and on Sand Dunes in Korea.��� Korean Journal of Plant Taxonomy 39, no. 4: 264���276.
  55. Snogerup, S. 1993. ���A Revision of Juncus Subgenus Juncus (Juncaceae).��� Willdenowia 23: 23���73.
  56. Soltis, D. E., V. A. Albert, J. Leebens���Mack, et al. 2009. ���Polyploidy and Angiosperm Diversification.��� American Journal of Botany 96, no. 1: 336���348.
  57. Stace, C. A. 1965. ���Cuticular Studies as an Aid to Plant Taxonomy.��� Bulletin of the Natural History Museum 4: 37���40.
  58. Stebbins, G. L., and G. S. Khush. 1961. ���Variation in the Organization of the Stomatal Complex in the Leaf Epidermis of Monocotyledons and Its Bearing on Their Phylogeny.��� American Journal of Botany 48, no. 1: 51���59.
  59. Tomaszewski, D., A. Byalt, and M. Gawlak. 2019. ���Leaf and Stem Epicuticular Wax Structures in Lonicera Species (Caprifoliaceae).��� Nordic Journal of Botany 37, no. 5: e02210.
  60. Wang, Q., S.���D. Zhou, X.���Y. Deng, Q. Zheng, and X.���J. He. 2009. ���Comparative Morphology of the Leaf Epidermis in Fritillaria (Liliaceae) From China.��� Botanical Journal of the Linnean Society 160, no. 1: 93���109.
  61. Weiss���Schneeweiss, H., K. Emadzade, T.���S. Jang, and G. M. Schneeweiss. 2013. ���Evolutionary Consequences, Constraints, and Potential of Polyploidy in Plants.��� Cytogenetic and Genome Research 140, no. 2���4: 137���150.
  62. Wendel, J. F. 2000. ���Genome Evolution in Polyploids.��� Plant Molecular Biology 42: 225���249.
  63. Wu, G., and S. E. Clements. 2000. ���Juncaceae.��� In Flora of China 24, edited by Z. Wu and P. H. Raven, 44���69. St. Louis, Beijing: Missouri Botanical Garden Press.
  64. Zhang, Y.���X., C.���X. Zeng, and D.���Z. Li. 2014. ���Scanning Electron Microscopy of the Leaf Epidermis in Arundinarieae (Poaceae: Bambusoideae): Evolutionary Implications of Selected Micromorphological Features.��� Botanical Journal of the Linnean Society 176, no. 1: 46���65.
  65. Zhao, H., M.���H. Xiao, Y. Zhong, and Y.���Q. Wang. 2022. ���Leaf Epidermal Micromorphology of Zingiber (Zingiberaceae) From China and Its Systematic Significance.��� PhytoKeys 190: 131���146.
  66. Zoric, L., L. Merkulov, J. Lukovic, P. Boza, and D. Polic. 2009. ���Leaf Epidermal Characteristics of Trifolium L. Species From Serbia and Montenegro.��� Flora 204, no. 3: 198���209.

Grants

  1. /National Research Foundation of Korea
  2. /Ministry of Science and ICT, South Korea

MeSH Term

Plant Leaves
Microscopy
Plant Stomata
Plant Epidermis
Plant Stems
Republic of Korea

Word Cloud

Created with Highcharts 10.0.0JuncusKoreantaxaspeciesleafleavescellstemcellsgenusamongexternalmorphologicalcharacteristicstaxonomicmicromorphologicalstudiedcataphyllcaulineLeafepidermalstomataltwolengthcharacterstaxonomymicroscopyLcomprisingapproximately310perennialherbaceousplanthighestdiversityJuncaceaeAlthoughanatomicaluseddelimitationstructurecomprehensivelydescribedmainobjectivedeterminewhethercomparisonsprovidetaxonomicallyinformativerushespossessedunifacialbifacialalthoughpatternsoutlinesabaxialsurfacesstemssimilarirregularlyarrangedexhibitedrectangularrhomboidalpolygonalshapesStriationscommonalmosthoweverscalyepicuticularwaxfoundJsetchuensiscomplexesuniformlyparacyticstomatasurroundedsubsidiaryregardlessoccurrencesurfaceGuardimportantaccordancetraditionaldistinguishessubgenerabasedDifferencesguarddensityalsoinfluencedenvironmentalfactorsclearlycorrelatedvariationsploidylevelsMicromorphologicalCharacteristicsRushTaxonomicImplicationsBasedMicroscopicAnalysisjuncusmicromorphologylightscanningelectron

Similar Articles

Cited By

No available data.