Expanding Horizons: The First Reported Outbreak of Piscine Lactococcosis in Farmed Gilthead Seabream Sparus aurata in the Northern Tyrrhenian Sea.

Giuseppe Esposito, Giorgia Bignami, Silvia Colussi, Paolo Pastorino, Fabio Bondavalli, Marialetizia Fioravanti, Elena Bozzetta, Pierluigi Acutis, Andrea Valentino, Renzo Rizzi, Andrea Gustinelli, Marino Prearo
Author Information
  1. Giuseppe Esposito: Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy.
  2. Giorgia Bignami: Department of Veterinary Medical Sciences, Ozzano dell'Emilia, Italy.
  3. Silvia Colussi: Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy.
  4. Paolo Pastorino: Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy.
  5. Fabio Bondavalli: Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy. ORCID
  6. Marialetizia Fioravanti: Department of Veterinary Medical Sciences, Ozzano dell'Emilia, Italy.
  7. Elena Bozzetta: Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy.
  8. Pierluigi Acutis: Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy.
  9. Andrea Valentino: Independent Veterinarian, Gaeta, Italy.
  10. Renzo Rizzi: Independent Biologist, Orbetello, Italy.
  11. Andrea Gustinelli: Department of Veterinary Medical Sciences, Ozzano dell'Emilia, Italy. ORCID
  12. Marino Prearo: Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy.

Abstract

Piscine lactococcosis, caused by Lactococcus garvieae, has traditionally been reported in rainbow trout and marine fish in specific regions. However, its first outbreak in farmed gilthead seabream Sparus aurata in the northern Tyrrhenian Sea marks a significant expansion in the distribution of the disease. In 2024, a total of 212 gilthead seabream from three different aquaculture facilities, including one offshore farm with floating cages and two land-based tank farms, were subjected to diagnostic exams during mortality outbreaks. Bacterial isolation and molecular identification confirmed L. garvieae in market-size gilthead seabream collected during mortality outbreaks in the warm season or at seawater temperatures >���18��C. Our results highlight the importance of environmental monitoring and pathogen management in preventing piscine lactococcosis. The outbreaks align with previous studies on L. garvieae infections in marine fish, particularly regarding water temperature. The expanding geographic range of the pathogen necessitates further investigation into its ecology, particularly in Mediterranean aquaculture. This study highlights the need for improved biosecurity measures, early detection methods, and tailored vaccination strategies to mitigate the impact of piscine lactococcosis in gilthead seabream farming. Future research should focus on understanding the environmental triggers and host-pathogen interactions to develop more effective control strategies.

Keywords

References

  1. Abdel���Aziz, M., A. E. Eissa, M. Hanna, and M. Abou Okada. 2013. ���Identifying Some Pathogenic Vibrio/Photobacterium Species During Mass Mortalities of Cultured Gilthead Seabream (Sparus Aurata) and European Seabass (Dicentrarchus Labrax) From Some Egyptian Coastal Provinces.��� International Journal of Veterinary Science and Medicine 1, no. 2: 87���95. https://doi.org/10.1016/j.ijvsm.2013.10.004.
  2. Abraham, T., Z. Yazdi, E. Littman, et al. 2023. ���Detection and Virulence of Lactococcus Garvieae and L.���Petauri From Four Lakes in Southern California.��� Journal of Aquatic Animal Health 35, no. 3: 187���198. https://doi.org/10.1002/aah.10188.
  3. Akayl��, T., ��. ��rk��, and Z. G��ken. 2022. ���Pathological Aspects of Experimental Infection of Lactococcus Garvieae in European Sea Bass (Dicentrarchus Labrax L.): Clinical, Hematological, and Histopathological Parameters.��� Aquatic Research 5, no. 3: 219���229 9. https://doi.org/10.3153/AR22021.
  4. Alg��et, M., A. E. Bayley, E. G. Roberts, S. W. Feist, R. W. Wheeler, and D. W. Verner���Jeffreys. 2009. ���Susceptibility of Selected Freshwater Fish Species to a UK Lactococcus Garvieae Isolate.��� Journal of Fish Diseases 32, no. 10: 825���834. https://doi.org/10.1111/j.1365���2761.2009.01058.x.
  5. Altinok, I., R. C. Ozturk, and M. Ture. 2022. ���NGS Analysis Revealed That Lactococcus Garvieae Lg���Per Was Lactococcus Petauri in T��rkiye.��� Journal of Fish Diseases 45, no. 12: 1839���1843. https://doi.org/10.1111/jfd.13708.
  6. Aly, S. M., M. A. Elatta, N. I. ElBanna, et al. 2023. ���Comprehensive Analysis of Vibrio alginolyticus: Environmental Risk Factors in the Cultured Gilthead Seabream (Sparus aurata) Under Seasonal Fluctuations and Water Parameter Alterations.��� Journal of Fish Diseases 46, no. 12: 1425���1437. https://doi.org/10.1111/jfd.13860.
  7. Ashbolt, N. J. 2010. ���Global Warming and Trans���Boundary Movement of Waterborne Microbial Pathogens.��� In Adaptation and Mitigation Strategies for Climate Change, edited by A. Sumi, K. Fukushi, and A. Hiramatsu, 71���82. Springer. https://doi.org/10.1007/978���4���431���99798���6_5.
  8. Bebak���Williams, J., P. E. McAllister, G. Smith, and R. Boston. 2002. ���Effect of Fish Density and Number of Infectious Fish on the Survival of Rainbow Trout Fry, Oncorhynchus mykiss (Walbaum), During Epidemics of Infectious Pancreatic Necrosis.��� Journal of Fish Diseases 25, no. 12: 715���726. https://doi.org/10.1046/j.1365���2761.2002.00426.x.
  9. Bondavalli, F., S. Colussi, P. Pastorino, et al. 2024. ���First Report of Lactococcus Petauri in the Pumpkinseed (Lepomis Gibbosus) From Candia Lake (Northwestern Italy).��� Fishes 9, no. 4: 117. https://doi.org/10.3390/fishes9040117.
  10. Bulfon, C., M. Prearo, D. Volpatti, et al. 2020. ���Resistant and Susceptible Rainbow Trout (Oncorhynchus Mykiss) Lines Show Distinctive Immune Response to Lactococcus Garvieae.��� Fish & Shellfish Immunology 105: 457���468. https://doi.org/10.1016/j.fsi.2020.06.040.
  11. Bwalya, P., B. M. Hang'ombe, ��. Evensen, and S. Mutoloki. 2021. ���Lactococcus Garvieae Isolated From Lake Kariba (Zambia) has Low Invasive Potential in Nile Tilapia (Oreochromis Niloticus).��� Journal of Fish Diseases 44, no. 6: 721���727. https://doi.org/10.1111/jfd.13339.
  12. Chen, S. C., L. L. Liaw, H. Y. Su, et al. 2002. ���Lactococcus Garvieae, a Cause of Disease in Grey Mullet, Mugil Cephalus L., in Taiwan.��� Journal of Fish Diseases 25, no. 12: 727���732. https://doi.org/10.1046/j.1365���2761.2002.00415.x.
  13. Choi, H. J., J. W. Hur, J. B. Cho, K. H. Park, H. J. Jung, and Y. J. Kang. 2019. ���Introduction of Bacterial and Viral Pathogens From Imported Ornamental Finfish in South Korea.��� Fisheries and Aquatic Sciences 22: 1���9. https://doi.org/10.1186/s41240���019���0120���9.
  14. Chuah, L. O., M. E. Effarizah, A. M. Goni, and G. Rusul. 2016. ���Antibiotic Application and Emergence of Multiple Antibiotic Resistance (MAR) in Global Catfish Aquaculture.��� Current Environmental Health Reports 3: 118���127. https://doi.org/10.1007/s40572���016���0091���2.
  15. CLSI VET03. 2020. Methods for Antimicrobial Broth Dilution and Disk Diffusion Susceptibility Testing of Bacteria Isolated From Aquatic Animals. 2nd ed. Clinical and Laboratory Standards Institute.
  16. CLSI VET04. 2020. Performance Standards for Antimicrobial Susceptibility Testing of Bacteria Isolated From Aquatic Animals. 3rd ed. Clinical and Laboratory Standards Institute.
  17. Colorni, A., C. Ravelo, J. L. Romalde, A. E. Toranzo, and A. Diamant. 2003. ���Lactococcus garvieae In Wild Red Sea Wrasse Coris aygula (Labridae).��� Diseases of Aquatic Organisms 56, no. 3: 275���278. https://doi.org/10.3354/dao056275.
  18. Constable, A. J., J. Melbourne���Thomas, S. P. Corney, et al. 2014. ���Climate Change and Southern Ocean Ecosystems I: How Changes in Physical Habitats Directly Affect Marine Biota.��� Global Change Biology 20, no. 10: 3004���3025. https://doi.org/10.1111/gcb.12623.
  19. Egger, R. C., J. C. C. Rosa, L. F. L. Resende, et al. 2023. ���Emerging Fish Pathogens Lactococcus Petauri and L. Garvieae in Nile Tilapia (Oreochromis Niloticus) Farmed in Brazil.��� Aquaculture 565: 739093. https://doi.org/10.1016/j.aquaculture.2022.739093.
  20. Eldar, A., C. Ghittino, L. Asanta, et al. 1996. ���Enterococcus Seriolicida Is a Junior Synonym of Lactococcus Garvieae, a Causative Agent of Septicaemia and Meningoencephalitis in Fish.��� Current Microbiology 32: 85���88. https://doi.org/10.1007/s002849900015.
  21. EPA (United States Environmental Protection Agency). 2024. https://www.epa.gov/climate���indicators/climate���change���indicators���sea���surface���temperature#:~:text=From%201901%20through%202023%2C%20temperature,ever%20recorded%20(Figure%201).
  22. Esposito, G., S. Bergagna, S. Colussi, et al. 2024. ���Changes in Blood Serum Parameters in Farmed Rainbow Trout (Oncorhynchus Mykiss) During a Piscine Lactococcosis Outbreak.��� Journal of Fish Diseases 47, no. 10: e13994. https://doi.org/10.1111/jfd.13994.
  23. Estensoro, I., V. Jung���Schroers, P. ��lvarez���Pellitero, D. Steinhagen, and A. Sitj�����Bobadilla. 2013. ���Effects of Enteromyxum Leei (Myxozoa) Infection on Gilthead Sea Bream (Sparus aurata) (Teleostei) Intestinal Mucus: Glycoprotein Profile and Bacterial Adhesion.��� Parasitology Research 112: 567���576. https://doi.org/10.1007/s00436���012���3168���3.
  24. Evans, J. J., P. H. Klesius, and C. A. Shoemaker. 2009. ���First Isolation and Characterization of Lactococcus garvieae From Brazilian Nile Tilapia, Oreochromis niloticus (L.), and Pintado, Pseudoplathystoma corruscans (Spix & Agassiz).��� Journal of Fish Diseases 32, no. 11: 943���951. https://doi.org/10.1111/j.1365���2761.2009.01075.x.
  25. Eyngor, M., A. Zlotkin, C. Ghittino, et al. 2004. ���Clonality and Diversity of the Fish Pathogen Lactococcus Garvieae in Mediterranean Countries.��� Applied and Environmental Microbiology 70, no. 9: 5132���5137. https://doi.org/10.1128/AEM.70.9.5132���5137.2004.
  26. FAO. 2024. ���Fisheries and Aquaculture Software. FishStatJ���Software for Fishery Statistical Time Series.��� https://www.fao.org/fishery/en/statistics/software/fishstatj.
  27. Fleurance, R., C. Sauvegrain, A. Marques, et al. 2008. ���Histopathological Changes Caused by Enteromyxum leei Infection in Farmed Sea Bream Sparus aurata.��� Diseases of Aquatic Organisms 79, no. 3: 219���228. https://doi.org/10.3354/dao01832.
  28. Fukushima, H. C. S., C. A. G. Leal, R. B. Cavalcante, et al. 2016. ���Lactococcus Garvieae Outbreaks in Brazilian Farms Lactococcosis in Pseudoplatystoma Sp. ���Development of an Autogenous Vaccine as a Control Strategy.��� Journal of Fish Diseases 40, no. 2: 263���272. https://doi.org/10.1111/jfd.12509.
  29. Ghittino, C., M. Prearo, E. Bozzetta, and A. Eldar. 1995. ���Characterization of the Pathogenicity of the Etiological Agent of Fish Streptococcosis in Italy and Vaccination Trials in Rainbow Trout.��� Bollettino Societ�� Italiana di Patologia Ittica 16: 2���12.
  30. Ghittino, P., and M. Prearo. 1992. ���Report of Streptococcosis in Rainbow Trout (Oncorhynchus Mykiss) in Italy: Preliminary Note.��� Bollettino Societa Italiana di Patologia Ittica 8: 4���9.
  31. Gibello, A., F. Gal��n���S��nchez, M. M. Blanco, M. Rodr��guez���Iglesias, L. Dom��nguez, and J. F. Fern��ndez���Garayz��bal. 2016. ���The Zoonotic Potential of Lactococcus Garvieae: An Overview on Microbiology, Epidemiology, Virulence Factors and Relationship With Its Presence in Foods.��� Research in Veterinary Science 109: 59���70. https://doi.org/10.1016/j.rvsc.2016.09.010.
  32. Haldar, S., A. Maharajan, S. Chatterjee, et al. 2010. ���Identification of Vibrio Harveyi as a Causative Bacterium for a Tail Rot Disease of Sea Bream Sparus Aurata From Research Hatchery in Malta.��� Microbiological Research 165, no. 8: 639���648. https://doi.org/10.1016/j.micres.2009.12.001.
  33. Han, H. J., N. S. Lee, M. S. Kim, and S. H. Jung. 2015. ���An Outbreak of Lactococcus garvieae Infection in Cage���Cultured Red Lip Mullet Chelon haematocheilus With Green Liver Syndrome.��� Fisheries and Aquatic Sciences 18, no. 3: 333���339. https://doi.org/10.5657/FAS.2015.0333.
  34. Handisyde, N. T., L. G. Ross, M. C. Badjeck, and E. H. Allison. 2006. The Effects of Climate Change on World Aquaculture: a Global Perspective. Aquaculture and Fish Genetics Research Programme, Stirling Institute of Aquaculture. Final Technical Report, DFID, Stirling.
  35. Harley, C. D., A. Randall Hughes, K. M. Hultgren, et al. 2006. ���The Impacts of Climate Change in Coastal Marine Systems.��� Ecology Letters 9, no. 2: 228���241. https://doi.org/10.1111/j.1461���0248.2005.00871.x.
  36. Hossain, M. M. M., A. Ehsan, M. A. Rahman, M. Haq, and M. B. R. Chowdhury. 2014. ���Transmission and Pathology of Streptococcus Inane in Monosex Nile Tilapia (Oreochromis niloticus) in Aquaculture of Bangladesh.��� Journal of Fisheries 2, no. 1: 90���99. https://doi.org/10.17017/j.fish.66.
  37. Kabadjova, P., X. Dousset, V. Le Cam, and H. Prevost. 2002. ���Differentiation of Closely Related Carnobacterium Food Isolates Based on 16S���23S Ribosomal DNA Intergenic Spacer Region Polymorphism.��� Applied and Environmental Microbiology 68, no. 11: 5358���5366. https://doi.org/10.1128/AEM.68.11.5358���5366.2002.
  38. Kang, S. H., G. W. Shin, Y. S. Shin, et al. 2004. ���Experimental Evaluation of Pathogenicity of Lactococcus Garvieae in Black Rockfish (Sebastes Schlegeli).��� Journal of Veterinary Science 5, no. 4: 387���390. https://doi.org/10.4142/jvs.2004.5.4.387.
  39. Kawanishi, M., A. Kojima, K. Ishihara, et al. 2005. ���Drug Resistance and Pulsed���Field Gel Electrophoresis Patterns of Lactococcus Garvieae Isolates From Cultured Seriola (Yellowtail, Amberjack and Kingfish) in Japan.��� Letters in Applied Microbiology 40, no. 5: 322���328. https://doi.org/10.1111/j.1472���765X.2005.01690.x.
  40. Khalil, S. M. I., M. Orioles, P. Tom��, M. Galeotti, and D. Volpatti. 2024. ���Current Knowledge of Lactococcosis in Rainbow Trout: Pathogenesis, Immune Response and Prevention Tools.��� Aquaculture 580: 740363. https://doi.org/10.1016/j.aquaculture.2023.740363.
  41. Kotzamanidis, C., A. Malousi, K. Bitchava, et al. 2020. ���First Report of Isolation and Genome Sequence of L. Petauri Strain From a Rainbow Trout Lactococcosis Outbreak.��� Current Microbiology 77, no. 6: 1089���1096. https://doi.org/10.1007/s00284���020���01905���8.
  42. Lee, D. C., J. I. Lee, C. I. Park, and S. I. Park. 2001. ���The Study on the Causal Agent of Streptococcicosis (Lactococcus Garvieae), Isolated From Cultured Marine Fishes.��� Journal of Fish Pathology 14, no. 2: 71���80.
  43. Littman, E. M., T. I. Heckman, Z. Yazdi, et al. 2023. ���Temperature���Associated Virulence, Species Susceptibility and Interspecies Transmission of a Lactococcus Petauri Strain From Rainbow Trout.��� Diseases of Aquatic Organisms 155: 147���158. https://doi.org/10.3354/dao03747.
  44. Meyburgh, C. M., R. R. Bragg, and C. E. Boucher. 2017. ���Lactococcus garvieae: An Emerging Bacterial Pathogen of Fish.��� Diseases of Aquatic Organisms 123, no. 1: 67���79. https://doi.org/10.3354/dao03083.
  45. Mladineo, I., D. Volpatti, P. Beraldo, G. Rigos, P. Katharios, and F. Padros. 2024. ���Monogenean Sparicotyle Chrysophrii: The Major Pathogen of the Mediterranean Gilthead Seabream Aquaculture.��� Reviews in Aquaculture 16, no. 1: 287���308. https://doi.org/10.1111/raq.12839.
  46. Neupane, S., S. Rao, W. X. Yan, P. C. Wang, and S. C. Chen. 2023. ���First Identification, Molecular Characterization, and Pathogenicity Assessment of Lactococcus garvieae Isolated From Cultured Pompano in Taiwan.��� Journal of Fish Diseases 46, no. 11: 1295���1309. https://doi.org/10.1111/jfd.13848.
  47. Noga, E. J. 2010. Fish Disease: Diagnosis and Treatment. John Wiley & Sons.
  48. Ortega, C., R. Irgang, B. Valladares���Carranza, C. Collarte, and R. Avenda��o���Herrera. 2020. ���First Identification and Characterization of Lactococcus garvieae Isolated From Rainbow Trout (Oncorhynchus mykiss) Cultured in Mexico.��� Animals 10, no. 9: 1609. https://doi.org/10.3390/ani10091609.
  49. Pastor, F., J. A. Valiente, and S. Khodayar. 2020. ���A Warming Mediterranean: 38���Years of Increasing Sea Surface Temperature.��� Remote Sensing 12, no. 17: 2687. https://doi.org/10.3390/rs12172687.
  50. Pastorino, P., S. Colussi, E. Pizzul, et al. 2021. ���The Unusual Isolation of Carnobacteria in Eyes of Healthy Salmonids in High���Mountain Lakes.��� Scientific Reports 11, no. 1: 2314. https://doi.org/10.1038/s41598���021���82133���3.
  51. Pastorino, P., A. I. Vela Alonso, S. Colussi, et al. 2019. ���A Summer Mortality Outbreak of Lactococcosis by Lactococcus Garvieae in a Raceway System Affecting Farmed Rainbow Trout (Oncorhynchus Mykiss) and Brook Trout (Salvelinus Fontinalis).��� Animals 9, no. 12: 1043. https://doi.org/10.3390/ani9121043.
  52. Pellizzari, C., A. Krasnov, S. Afanasyev, et al. 2013. ���High Mortality of Juvenile Gilthead Sea Bream (Sparus Aurata) From Photobacteriosis Is Associated With Alternative Macrophage Activation and Anti���Inflammatory Response: Results of Gene Expression Profiling of Early Responses in the Head Kidney.��� Fish & Shellfish Immunology 34, no. 5: 1269���1278. https://doi.org/10.1016/j.fsi.2013.02.007.
  53. Pereira, F., C. Ravelo, A. E. Toranzo, and J. L. Romalde. 2004. ���Lactococcus garvieae, an Emerging Pathogen for the Portuguese Trout Culture.��� Bulletin of the European Association of Fish Pathologists 24, no. 6: 274���279.
  54. P��rtner, H. O., and M. A. Peck. 2010. ���Climate Change Effects on Fishes and Fisheries: Towards a Cause���And���Effect Understanding.��� Journal of Fish Biology 77, no. 8: 1745���1779. https://doi.org/10.1111/j.1095���8649.2010.02783.x.
  55. Rao, S., T. H. Pham, S. Poudyal, et al. 2022. ���First Report on Genetic Characterization, Cell���Surface Properties and Pathogenicity of Lactococcus Garvieae, Emerging Pathogen Isolated From Cage���Cultured Cobia (Rachycentron Canadum).��� Transboundary and Emerging Diseases 69, no. 3: 1197���1211. https://doi.org/10.1111/tbed.14083.
  56. Ravelo, C., B. Magarinos, S. L��pez���Romalde, A. E. Toranzo, and J. L. Romalde. 2003. ���Molecular Fingerprinting of Fish���Pathogenic Lactococcus Garvieae Strains by Random Amplified Polymorphic DNA Analysis.��� Journal of Clinical Microbiology 41, no. 2: 751���756. https://doi.org/10.1128/jcm.41.2.751���756.2003.
  57. Salati, F., G. Angelucci, I. Viale, and R. Kusuda. 2005. ���Immune Response of Gilthead Sea Bream, Sparus Aurata L., to Lactococcus Garvieae Antigens.��� Bulletin of the European Association of Fish Pathologists 25: 40���48.
  58. Salogni, C., C. Bertasio, A. Accini, et al. 2024. ���The Characterisation of Lactococcus Garvieae Isolated in an Outbreak of Septicaemic Disease in Farmed Sea Bass (Dicentrarchus Labrax, Linnaues 1758) in Italy.��� Pathogens 13, no. 1: 49. https://doi.org/10.3390/pathogens13010049.
  59. Shahin, K., T. Veek, T. I. Heckman, et al. 2021. ���Isolation and Characterization of Lactococcus Garvieae From Rainbow Trout, Oncorhynchus Mykiss, From California, USA.��� Transboundary and Emerging Diseases 69, no. 4: 2326���2343. https://doi.org/10.1111/tbed.14250.
  60. Shao, Y., Y. Wang, Y. Yuan, and Y. Xie. 2021. ���A Systematic Review on Antibiotics Misuse in Livestock and Aquaculture and Regulation Implications in China.��� Science of the Total Environment 798: 149205. https://doi.org/10.1016/j.scitotenv.2021.149205.
  61. Sitj�����Bobadilla, A., M. Redondo, and M. ��lvarez���Pellitero. 2010. ���Occurrence of Sparicotyle Chrysophrii (Monogenea: Polyopisthocotylea) in Gilthead Sea Bream (Sparus Aurata L.) From Different Mariculture Systems in Spain.��� Aquaculture Research 41: 939���944. https://doi.org/10.1111/j.1365���2109.2009.02369.x.
  62. Soltani, M., B. Baldisserotto, S. P. Hosseini Shekarabi, S. Shafiei, and M. Bashiri. 2021. ���Lactococcosis a Re���Emerging Disease in Aquaculture: Disease Significant and Phytotherapy.��� Veterinary Sciences 8, no. 9: 181. https://doi.org/10.3390/vetsci8090181.
  63. Stoppani, N., S. Colussi, P. Pastorino, et al. 2023. ���16S���23S rRNA Internal Transcribed Spacer Region (ITS) Sequencing: A Potential Molecular Diagnostic Tool for Differentiating Lactococcus Garvieae and Lactococcus Petauri.��� Microorganisms 11, no. 5: 1320. https://doi.org/10.3390/microorganisms11051320.
  64. Tsai, M. A., P. C. Wang, L. L. Liaw, T. Yoshida, and S. C. Chen. 2012. ���Comparison of Genetic Characteristics and Pathogenicity of Lactococcus garvieae Isolated From Aquatic Animals in Taiwan.��� Diseases of Aquatic Organisms 102, no. 1: 43���51. https://doi.org/10.3354/dao02516.
  65. T��re, M., H. ��. Halilo��lu, C. Altunta��, H. Boran, and ��. Kutlu. 2014. ���Comparison of Experimental Susceptibility of Rainbow Trout (Oncorhynchus Mykiss), turbot (Psetta Maxima), black Sea Trout (Salmo Trutta Labrax) and Sea Bass (Dicentrarchus Labrax) to Lactococcus Garvieae.��� Turkish Journal of Fisheries and Aquatic Sciences 14, no. 2: 507���513. https://doi.org/10.4194/1303���2712���v14_2_22.
  66. Vela, A. I., M. del Mar Blanco, S. Colussi, et al. 2024. ���The Association of Lactococcus Petauri With Lactococcosis Is Older Than Expected.��� Aquaculture 578: 740057. https://doi.org/10.1016/j.aquaculture.2023.740057.
  67. Vendrell, D., J. L. Balc��zar, I. Ruiz���Zarzuela, I. De Blas, O. Giron��s, and J. L. M��zquiz. 2006. ���Lactococcus Garvieae in Fish: A Review.��� Comparative Immunology, Microbiology and Infectious Diseases 29, no. 4: 177���198. https://doi.org/10.1016/j.cimid.2006.06.003.
  68. Zaki, M. A., A. N. Alabssawy, A. E. A. M. Nour, et al. 2020. ���The Impact of Stocking Density and Dietary Carbon Sources on the Growth, Oxidative Status and Stress Markers of Nile Tilapia (Oreochromis Niloticus) Reared Under Biofloc Conditions.��� Aquaculture Reports 16: 100282. https://doi.org/10.1016/j.aqrep.2020.100282.

Grants

  1. /National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union - Next Generation EU. Project code CN_00000033, Concession Decree No. 1034 of 17 June 2022 adopted by the Italian Ministry of University and Research, CUP J33C22001190001 (Department of Veterinary Medical Sciences, Alma Mater Studiorum Univer

Word Cloud

Created with Highcharts 10.0.0garvieaegiltheadseabreamlactococcosismarineaquacultureoutbreaksenvironmentalPiscineLactococcusfishSparusaurataTyrrhenianSeadiseasemortalityLpathogenpiscineparticularlystrategiescausedtraditionallyreportedrainbowtroutspecificregionsHoweverfirstoutbreakfarmednorthernmarkssignificantexpansiondistribution2024total212threedifferentfacilitiesincludingoneoffshorefarmfloatingcagestwoland-basedtankfarmssubjecteddiagnosticexamsBacterialisolationmolecularidentificationconfirmedmarket-sizecollectedwarmseasonseawatertemperatures>���18��CresultshighlightimportancemonitoringmanagementpreventingalignpreviousstudiesinfectionsregardingwatertemperatureexpandinggeographicrangenecessitatesinvestigationecologyMediterraneanstudyhighlightsneedimprovedbiosecuritymeasuresearlydetectionmethodstailoredvaccinationmitigateimpactfarmingFutureresearchfocusunderstandingtriggershost-pathogeninteractionsdevelopeffectivecontrolExpandingHorizons:FirstReportedOutbreakLactococcosisFarmedGiltheadSeabreamNorthernItalybacterialinfectionsurveillancestressorsecosystemspathogenesis

Similar Articles

Cited By

No available data.