Imaging the enteric nervous system.

Doriane Hazart, Marwa Moulzir, Brigitte Delhomme, Martin Oheim, Clément Ricard
Author Information
  1. Doriane Hazart: Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France.
  2. Marwa Moulzir: Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France.
  3. Brigitte Delhomme: Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France.
  4. Martin Oheim: Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France.
  5. Clément Ricard: Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France.

Abstract

The enteric nervous system (ENS) has garnered increasing scientific interest due to its pivotal role in digestive processes and its involvement in various gastrointestinal and central nervous system (CNS) disorders, including Crohn's disease, Parkinson's disease, and autism. Despite its significance, the ENS remains relatively underexplored by neurobiologists, primarily because its structure and function are less understood compared to the CNS. This review examines both pioneering methodologies that initially revealed the intricate layered structure of the ENS and recent advancements in studying its three-dimensional (3-D) organization, both in fixed samples and at a functional level, or . Traditionally, imaging the ENS relied on histological techniques involving sequential tissue sectioning, staining, and microscopic imaging of single sections. However, this method has limitations representing the full complexity of the ENS's 3-D meshwork, which led to the development of more intact preparations, such as whole-mount preparation, as well as the use of volume imaging techniques. Advancements in 3-D imaging, particularly methods like spinning-disk confocal, 2-photon, and light-sheet microscopies, combined with tissue-clearing techniques, have revolutionized our understanding of the ENS's fine structure. These approaches offer detailed views of its cellular architecture, including interactions among various cell types, blood vessels, and lymphatic vessels. They have also enhanced our comprehension of ENS-related pathologies, such as inflammatory bowel disease, Hirschsprung's disease (HSCR), and the ENS's involvement in neurodegenerative disorders like Parkinson's (PD) and Alzheimer's diseases (AD). More recently, 2-photon or confocal imaging, combined with transgenic approaches for calcium imaging, or confocal laser endomicroscopy, have opened new avenues for functional studies of the ENS. These methods enable real-time observation of enteric neuronal and glial activity and their interactions. While routinely used in CNS studies, their application to understanding local circuits and signals in the ENS is relatively recent and presents unique challenges, such as accommodating peristaltic movements. Advancements in 3-D functional imaging are expected to significantly deepen our understanding of the ENS and its roles in gastrointestinal and neurological diseases, potentially leading to improved diagnostic and therapeutic strategies.

Keywords

References

  1. Biomed Eng Lett. 2019 Jul 24;9(3):279-291 [PMID: 31456889]
  2. Cell Mol Life Sci. 2020 Nov;77(22):4505-4522 [PMID: 32424438]
  3. Nat Rev Gastroenterol Hepatol. 2018 Jan;15(1):21-38 [PMID: 29184183]
  4. Heliyon. 2021 Jun 15;7(6):e07308 [PMID: 34195419]
  5. Front Neuroanat. 2019 Aug 20;13:77 [PMID: 31481880]
  6. Scand J Gastroenterol. 2006 Nov;41(11):1245-60 [PMID: 17060117]
  7. Annu Rev Neurosci. 2019 Jul 8;42:295-313 [PMID: 31283896]
  8. Int J Biochem Cell Biol. 2017 Mar;84:35-39 [PMID: 28082099]
  9. Neurogastroenterol Motil. 2021 Apr;33(4):e14030 [PMID: 33174295]
  10. Neurogastroenterol Motil. 2013 Sep;25(9):e621-33 [PMID: 23809578]
  11. Clin Gastroenterol Hepatol. 2008 Jan;6(1):95-101 [PMID: 18065276]
  12. J Clin Invest. 2015 Mar 2;125(3):899-907 [PMID: 25664848]
  13. J Pediatr Surg. 2013 Jun;48(6):1288-93 [PMID: 23845620]
  14. Ann Anat. 2014 May;196(2-3):158-66 [PMID: 24690290]
  15. Med Mol Morphol. 2005 Jun;38(2):123-9 [PMID: 15944820]
  16. Biochem Biophys Res Commun. 2020 Apr 2;524(2):340-345 [PMID: 31996305]
  17. ACS Omega. 2018 May 31;3(5):5926-5930 [PMID: 30023932]
  18. Eur J Pediatr Surg. 2003 Jun;13(3):163-9 [PMID: 12939700]
  19. Methods Mol Biol. 2022;2510:145-156 [PMID: 35776324]
  20. Neurogastroenterol Motil. 2001 Jun;13(3):255-64 [PMID: 11437988]
  21. J Vis Exp. 2024 Jul 19;(209): [PMID: 39141543]
  22. J Gastroenterol Hepatol. 2016 Apr;31(4):802-7 [PMID: 26482711]
  23. Cell Tissue Res. 2020 Apr;380(1):67-77 [PMID: 31865468]
  24. Neurogastroenterol Motil. 2011 Oct;23(10):e446-57 [PMID: 21895876]
  25. Cell Rep. 2018 Aug 21;24(8):2196-2210.e9 [PMID: 30134179]
  26. Gastroenterology. 2020 Jun;158(8):2221-2235.e5 [PMID: 32113825]
  27. Front Neuroanat. 2023 Feb 09;16:1070062 [PMID: 36844894]
  28. Microsc Res Tech. 2018 Sep;81(9):941-958 [PMID: 29322581]
  29. Sci Rep. 2016 Sep 29;6:34331 [PMID: 27680942]
  30. Physiol Rev. 2023 Apr 1;103(2):1487-1564 [PMID: 36521049]
  31. Gastro Hep Adv. 2024 Aug 24;4(1):100537 [PMID: 39790245]
  32. Nat Commun. 2024 Sep 16;15(1):8123 [PMID: 39285207]
  33. J Immunol Methods. 2015 Jun;421:73-80 [PMID: 25801674]
  34. Annu Rev Physiol. 2019 Feb 10;81:235-259 [PMID: 30379617]
  35. Neurogastroenterol Motil. 2012 Apr;24(4):e202-5 [PMID: 22292943]
  36. Cell Tissue Res. 2021 Feb;383(2):645-654 [PMID: 32965550]
  37. J Neurosci Methods. 2021 Jan 15;348:109012 [PMID: 33249181]
  38. Am J Surg Pathol. 2000 Dec;24(12):1675-7 [PMID: 11117790]
  39. J Pediatr Surg. 2021 Jul;56(7):1150-1156 [PMID: 33838894]
  40. J Biomed Opt. 2011 Nov;16(11):116025 [PMID: 22112130]
  41. Anat Histol Embryol. 2020 Jul;49(4):563-570 [PMID: 32301153]
  42. Anat Histol Embryol. 2023 Nov;52(6):1029-1033 [PMID: 37458241]
  43. Front Cell Neurosci. 2013 Oct 21;7:183 [PMID: 24155689]
  44. Cell. 2015 Jul 16;162(2):246-257 [PMID: 26186186]
  45. Neurogastroenterol Motil. 2022 Feb;34(2):e14292 [PMID: 34865280]
  46. J Anat. 2012 Sep;221(3):279-83 [PMID: 22697278]
  47. Neurogastroenterol Motil. 2020 May;32(5):e13805 [PMID: 31989729]
  48. Neurosci Res. 2020 Feb;151:53-60 [PMID: 30790590]
  49. Annu Rev Cell Dev Biol. 2016 Oct 6;32:713-741 [PMID: 27298088]
  50. Nat Rev Gastroenterol Hepatol. 2016 Sep;13(9):517-28 [PMID: 27435372]
  51. J Physiol. 2023 Apr;601(7):1183-1206 [PMID: 36752210]
  52. Brain Res. 2021 Oct 15;1769:147609 [PMID: 34371014]
  53. ANZ J Surg. 2022 Jun;92(6):1365-1370 [PMID: 35403788]
  54. Clin Psychol Rev. 2021 Feb;83:101943 [PMID: 33271426]
  55. Glia. 2019 Jun;67(6):1167-1178 [PMID: 30730592]
  56. Poult Sci. 2024 Oct;103(10):104070 [PMID: 39094494]
  57. Gastroenterology. 2009 Apr;136(4):1349-58 [PMID: 19250649]
  58. J Neurosci. 2002 Aug 15;22(16):6962-71 [PMID: 12177194]
  59. J Neurogastroenterol Motil. 2015 Jul 30;21(3):337-51 [PMID: 26130630]
  60. Gut. 2003 Jan;52(1):84-90 [PMID: 12477766]
  61. J Neurogastroenterol Motil. 2016 Apr 30;22(2):310-20 [PMID: 26645247]
  62. J Pediatr Surg. 2004 Sep;39(9):1345-8 [PMID: 15359388]
  63. Front Neurosci. 2023 Aug 15;17:1204233 [PMID: 37650102]
  64. Front Neurosci. 2024 May 03;18:1382341 [PMID: 38765670]
  65. Cell. 2017 Mar 9;168(6):1135-1148.e12 [PMID: 28262351]
  66. Ann Anat. 1998 Oct;180(5):393-400 [PMID: 9795689]
  67. Neurogastroenterol Motil. 2021 Aug;33(8):e14014 [PMID: 33094876]
  68. J Huntingtons Dis. 2024;13(3):279-299 [PMID: 39213087]
  69. World J Gastroenterol. 2014 Nov 28;20(44):16690-7 [PMID: 25469038]
  70. J Vet Med Sci. 2023 Feb 1;85(2):123-134 [PMID: 36517005]
  71. EBioMedicine. 2019 Nov;49:172-188 [PMID: 31662289]
  72. Biology (Basel). 2021 Jun 30;10(7): [PMID: 34209277]
  73. Neurogastroenterol Motil. 2024 Jan;36(1):e14693 [PMID: 37882149]
  74. Nat Rev Gastroenterol Hepatol. 2012 Mar 06;9(5):286-94 [PMID: 22392290]
  75. J Neurosci Methods. 2001 Oct 15;111(1):29-37 [PMID: 11574117]
  76. NPJ Parkinsons Dis. 2022 Mar 24;8(1):31 [PMID: 35332158]
  77. J Neuroendocrinol. 2019 May;31(5):e12684 [PMID: 30614568]
  78. Sci Rep. 2018 Sep 21;8(1):14174 [PMID: 30242205]
  79. Front Aging Neurosci. 2022 Apr 19;14:810483 [PMID: 35517052]
  80. BMC Med Imaging. 2021 Jul 31;21(1):118 [PMID: 34332524]
  81. J Pediatr Surg. 1999 Mar;34(3):445-9 [PMID: 10211651]
  82. Eur J Pediatr Surg. 1994 Oct;4(5):274-8 [PMID: 7857883]
  83. Int J Mol Sci. 2021 Sep 07;22(18): [PMID: 34575824]
  84. Am J Physiol Gastrointest Liver Physiol. 2022 Oct 01;323(4):G341-G347 [PMID: 36044672]
  85. Commun Biol. 2023 Mar 2;6(1):236 [PMID: 36864093]
  86. J Opt. 2016 Sep;18(9): [PMID: 28386392]
  87. J Vis Exp. 2015 Jan 29;(95): [PMID: 25741967]
  88. Am J Physiol Gastrointest Liver Physiol. 2024 Mar 1;326(3):G330-G343 [PMID: 38226933]
  89. Physiol Rev. 2019 Oct 1;99(4):1877-2013 [PMID: 31460832]
  90. Nat Commun. 2016 Jun 07;7:11800 [PMID: 27270085]
  91. Protein Cell. 2021 Aug;12(8):621-638 [PMID: 33871822]
  92. Glia. 2015 Feb;63(2):229-41 [PMID: 25161129]
  93. J Vet Med Sci. 2023 Oct 18;85(10):1034-1039 [PMID: 37612064]
  94. J Anat. 2021 Feb;238(2):489-507 [PMID: 32939792]
  95. World J Gastroenterol. 2014 Dec 28;20(48):18216-27 [PMID: 25561789]
  96. Gastroenterology. 2008 Jul;135(1):20-3 [PMID: 18555020]
  97. J Vet Med Sci. 2020 Jul 31;82(7):990-999 [PMID: 32493889]
  98. Front Neurosci. 2019 May 01;13:426 [PMID: 31118881]
  99. Neurobiol Dis. 2022 Mar;164:105626 [PMID: 35031485]
  100. Sci Rep. 2018 Jul 20;8(1):10989 [PMID: 30030455]
  101. Aliment Pharmacol Ther. 2019 Oct;50(7):720-737 [PMID: 31418887]
  102. Anat Rec. 2001 Jan 1;262(1):79-90 [PMID: 11146431]
  103. Lab Anim. 1981 Jan;15(1):57-9 [PMID: 7022018]
  104. PLoS One. 2013;8(1):e54814 [PMID: 23382976]
  105. Neurogastroenterol Motil. 2010 Jan;22(1):e11-4 [PMID: 19650774]
  106. Med Sci (Paris). 2024 Jun-Jul;40(6-7):544-549 [PMID: 38986099]
  107. Front Cell Neurosci. 2015 Nov 10;9:436 [PMID: 26617487]
  108. Adv Biochem Eng Biotechnol. 2005;95:57-75 [PMID: 16080265]
  109. Neurogastroenterol Motil. 2013 May;25(5):e324-38 [PMID: 23495930]
  110. Gastroenterology. 2024 Aug;167(3):547-559 [PMID: 38494035]
  111. Cells. 2019 Jun 30;8(7): [PMID: 31262067]
  112. Curr Opin Neurobiol. 2020 Jun;62:26-33 [PMID: 31809998]
  113. Hosp Pract (1995). 1999 Jul 15;34(7):31-2, 35-8, 41-2 passim [PMID: 10418549]
  114. J Physiol. 2010 Feb 1;588(Pt 3):399-421 [PMID: 19948652]
  115. Neurogastroenterol Motil. 2023 Mar;35(3):e14480 [PMID: 36210765]

Word Cloud

Created with Highcharts 10.0.0imagingENS3-DdiseaseentericnervoussystemCNSstructurefunctionaltechniquesmethodENS'sconfocalunderstandinginvolvementvariousgastrointestinaldisordersincludingParkinson'srelativelyrecenthistologicalwhole-mountpreparationAdvancementsmethodslike2-photoncombinedapproachesinteractionsvesselsdiseasesstudiesgarneredincreasingscientificinterestduepivotalroledigestiveprocessescentralCrohn'sautismDespitesignificanceremainsunderexploredneurobiologistsprimarilyfunctionlessunderstoodcomparedreviewexaminespioneeringmethodologiesinitiallyrevealedintricatelayeredadvancementsstudyingthree-dimensionalorganizationfixedsampleslevelTraditionallyreliedinvolvingsequentialtissuesectioningstainingmicroscopicsinglesectionsHoweverlimitationsrepresentingfullcomplexitymeshworkleddevelopmentintactpreparationswellusevolumeparticularlyspinning-disklight-sheetmicroscopiestissue-clearingrevolutionizedfineofferdetailedviewscellulararchitectureamongcelltypesbloodlymphaticalsoenhancedcomprehensionENS-relatedpathologiesinflammatorybowelHirschsprung'sHSCRneurodegenerativePDAlzheimer'sADrecentlytransgeniccalciumlaserendomicroscopyopenednewavenuesenablereal-timeobservationneuronalglialactivityroutinelyusedapplicationlocalcircuitssignalspresentsuniquechallengesaccommodatingperistalticmovementsexpectedsignificantlydeepenrolesneurologicalpotentiallyleadingimproveddiagnostictherapeuticstrategiesImagingclearingin-vivointestinetechnique

Similar Articles

Cited By