Application of Optogenetic Neuromodulation in Regulating Depression.
Jin Zhang, Xiang Peng, Man Li, Xiao-Ming Zhang, Hong-Chun Xiang
Author Information
Jin Zhang: College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430065, China.
Xiang Peng: Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
Man Li: Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. liman73@mails.tjmu.edu.cn.
Xiao-Ming Zhang: College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430065, China. zhangxmzj@aliyun.com.
Hong-Chun Xiang: Department of Acupuncture and Moxibustion, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. hcxiang@hust.edu.cn. ORCID
Depression is a multifaceted disorder with a largely unresolved etiology influenced by a complex interplay of pathogenic factors. Despite decades of research, it remains a major condition that significantly diminishes patients' quality of life. Advances in optogenetics have introduced a powerful tool for exploring the neural mechanisms underlying depression. By selectively expressing optogenes in specific cell types in mice, researchers can study the roles of these cells through targeted light stimulation, offering new insights into central nervous system disorders. The use of viral vectors to express opsins in distinct neuronal subtypes enables precise activation or inhibition of these neurons via light. When combined with behavioral, morphological, and electrophysiological analyses, optogenetics provides an invaluable approach to investigating the neural mechanisms of psychiatric conditions. This review synthesizes current research on the application of optogenetics to understand the mechanisms of depression. This study aims to enhance our knowledge of optogenetic strategies for regulating depression and advancing antidepressant research.
Kim JW, Suzuki K, Kavalali ET, et al. Ketamine: Mechanisms and Relevance to Treatment of Depression. Annu Rev Med. 2024;75:129–143.
[PMID: 37729028]
Kolasa M, Faron-Gorecka A. Preclinical models of treatment-resistant depression: challenges and perspectives. Pharmacol Rep. 2023;75(6):1326–1340.
[PMID: 37882914]
Cleare A, Pariante CM, Young AH, et al. Evidence-based guidelines for treating depressive disorders with antidepressants: A revision of the 2008 British Association for Psychopharmacology guidelines. J Psychopharmacol. 2015;29(5):459–525.
[PMID: 25969470]
Karageorgiou V, Casanova F, O'Loughlin J, et al. Body mass index and inflammation in depression and treatment-resistant depression: a Mendelian randomisation study. BMC Med. 2023;21(1):355.
[PMID: 37710313]
Menard C, Pfau ML, Hodes GE, et al. Social stress induces neurovascular pathology promoting depression. Nat Neurosci. 2017;20(12):1752–1760.
[PMID: 29184215]
Dean J, Keshavan M. The neurobiology of depression: An integrated view. Asian J Psychiatr. 2017;27:101–111.
[PMID: 28558878]
Remes O, Mendes JF, Templeton P. Biological, Psychological, and Social Determinants of Depression: A Review of Recent Literature. Brain Sci. 2021;11(12):1633.
[PMID: 34942936]
Nunez NA, Joseph B, Pahwa M, et al. Augmentation strategies for treatment resistant major depression: A systematic review and network meta-analysis. J Affect Disord. 2022;302:385–400.
[PMID: 34986373]
Goodwin GM, Aaronson ST, Alvarez O, et al. Single-dose psilocybin for a treatment-resistant episode of major depression: Impact on patient-reported depression severity, anxiety, function, and quality of life. J Affect Disord. 2023;327:120–127.
[PMID: 36740140]
Hao Y, Ge H, Sun M, et al. Selecting an Appropriate Animal Model of Depression. Int J Mol Sci. 2019;20(19):4827.
[PMID: 31569393]
Sun N, Qin YJ, Xu C, et al. Design of fast-onset antidepressant by dissociating SERT from nNOS in the DRN. Science. 2022;378(6618):390–398.
[PMID: 36302033]
Cathomas F, Lin HY, Chan KL, et al. Circulating myeloid-derived MMP8 in stress susceptibility and depression. Nature. 2024;626(8001):1108–1115.
[PMID: 38326622]
Li Y, Yin Q, Li Q, et al. Botulinum neurotoxin A ameliorates depressive-like behavior in a reserpine-induced Parkinson's disease mouse model via suppressing hippocampal microglial engulfment and neuroinflammation. Acta Pharmacol Sin. 2023;44(7):1322–1336.
[PMID: 36765267]
Onel T, Aricioglu F, Yildirim E, et al. The effect of maternal separation stress-induced depression on ovarian reserve in Sprague Dawley Rats: The possible role of imipramine and agmatine through a mTOR signal pathway. Physiol Behav. 2023;269:114270.
[PMID: 37308044]
Li M, Sun X, Wang Z, et al. Caspase-1 affects chronic restraint stress-induced depression-like behaviors by modifying GABAergic dysfunction in the hippocampus. Transl Psychiatry. 2023;13(1):229.
[PMID: 37369673]
Shi ZM, Jing JJ, Xue ZJ, et al. Stellate ganglion block ameliorated central post-stroke pain with comorbid anxiety and depression through inhibiting HIF-1alpha/NLRP3 signaling following thalamic hemorrhagic stroke. J Neuroinflammation. 2023;20(1):82.
[PMID: 36944982]
Yan Y, Li J, Zhang Y, et al. Screening the effective components of Suanzaoren decoction on the treatment of chronic restraint stress induced anxiety-like mice by integrated chinmedomics and network pharmacology. Phytomedicine. 2023;115:154853.
[PMID: 37156059]
Murack M, Chandrasegaram R, Smith KB, et al. Chronic sleep disruption induces depression-like behavior in adolescent male and female mice and sensitization of the hypothalamic-pituitary-adrenal axis in adolescent female mice. Behav Brain Res. 2021;399:113001.
[PMID: 33197456]
Palumbo A, Aluru V, Battaglia J, et al. Music Upper Limb Therapy-Integrated Provides a Feasible Enriched Environment and Reduces Post-stroke Depression: A Pilot Randomized Controlled Trial. Am J Phys Med Rehabil. 2022;101(10):937–946.
[PMID: 34864768]
Seo MK, Choi AJ, Seog DH, et al. Early Enriched Environment Prevents Epigenetic p11 Gene Changes Induced by Adulthood Stress in Mice. Int J Mol Sci. 2021;22(4):1928.
[PMID: 33672075]
Mohammadi S, Seyedmirzaei H, Salehi MA, et al. Brain-based Sex Differences in Depression: A Systematic Review of Neuroimaging Studies. Brain Imaging Behav. 2023;17(5):541–569.
[PMID: 37058182]
Zajkowska Z, Gullett N, Walsh A, et al. Cortisol and development of depression in adolescence and young adulthood - a systematic review and meta-analysis. Psychoneuroendocrinology. 2022;136:105625.
[PMID: 34920399]
Cheng Z, Cui R, Ge T, et al. Optogenetics: What it has uncovered in potential pathways of depression. Pharmacol Res. 2020;152:104596.
[PMID: 31838082]
Biselli T, Lange SS, Sablottny L, et al. Optogenetic and chemogenetic insights into the neurocircuitry of depression-like behaviour: A systematic review. Eur J Neurosci. 2021;53(1):9–38.
[PMID: 31633833]
Spreen A, Alkhoury D, Walter H, et al. Optogenetic behavioral studies in depression research: A systematic review. iScience. 2024;27(5):109776.
Deisseroth K. Optogenetics. Nat Methods. 2011;8(1):26–29.
[PMID: 21191368]
Kong L, Guo X, Shen Y, et al. Pushing the Frontiers: Optogenetics for Illuminating the Neural Pathophysiology of Bipolar Disorder. Int J Biol Sci. 2023;19(14):4539–4551.
[PMID: 37781027]
Navabpour S, Kwapis JL, Jarome TJ. A neuroscientist's guide to transgenic mice and other genetic tools. Neurosci Biobehav Rev. 2020;108:732–748.
[PMID: 31843544]
Warden MR, Cardin JA, Deisseroth K. Optical neural interfaces. Annu Rev Biomed Eng. 2014;16:103–129.
[PMID: 25014785]
Fenno L, Yizhar O, Deisseroth K. The development and application of optogenetics. Annu Rev Neurosci. 2011;34:389–412.
[PMID: 21692661]
Xiang F, Zhang S, Tang M, et al. Optogenetics Neuromodulation of the Nose. Behav Neurol. 2024;2024:2627406.
[PMID: 39165250]
Zhao Q, Maci M, Miller MR, et al. Sleep restoration by optogenetic targeting of GABAergic neurons reprograms microglia and ameliorates pathological phenotypes in an Alzheimer's disease model. Mol Neurodegener. 2023;18(1):93.
[PMID: 38041158]
Black CJ, Allawala AB, Bloye K, et al. Automated and rapid self-report of nociception in transgenic mice. Sci Rep. 2020;10(1):13215.
[PMID: 32764714]
Wu Q, Long Y, Peng X, et al. Prefrontal cortical dopamine deficit may cause impaired glucose metabolism in schizophrenia. Transl Psychiatry. 2024;14(1):79.
[PMID: 38320995]
Trifu SC, Trifu AC, Aluas E, et al. Brain changes in depression. Rom J Morphol Embryol. 2020;61(2):361–370.
[PMID: 33544788]
Hare BD, Duman RS. Prefrontal cortex circuits in depression and anxiety: contribution of discrete neuronal populations and target regions. Mol Psychiatry. 2020;25(11):2742–2758.
[PMID: 32086434]
Wang R, Liu ZH, Bi N, et al. Dysfunction of the medial prefrontal cortex contributes to BPA-induced depression- and anxiety-like behavior in mice. Ecotoxicol Environ Saf. 2023;259:115034.
[PMID: 37210999]
Chen H, Xiong XX, Jin SY, et al. Dopamine D2 receptors in pyramidal neurons in the medial prefrontal cortex regulate social behavior. Pharmacol Res. 2024;199:107042.
[PMID: 38142878]
Zhang Y, Shao J, Wang X, et al. Functional impairment-based segmentation of anterior cingulate cortex in depression and its relationship with treatment effects. Hum Brain Mapp. 2021;42(12):4035–4047.
[PMID: 34008911]
Wang YD, Bao ST, Gao Y, et al. The anterior cingulate cortex controls the hyperactivity in subthalamic neurons in male mice with comorbid chronic pain and depression. PLoS Biol. 2024;22(2):e3002518.
[PMID: 38386616]
Becker LJ, Fillinger C, Waegaert R, et al. The basolateral amygdala-anterior cingulate pathway contributes to depression-like behaviors and comorbidity with chronic pain behaviors in male mice. Nat Commun. 2023;14(1):2198.
[PMID: 37069164]
Sellmeijer J, Mathis V, Hugel S, et al. Hyperactivity of Anterior Cingulate Cortex Areas 24a/24b Drives Chronic Pain-Induced Anxiodepressive-like Consequences. J Neurosci. 2018;38(12):3102–3115.
[PMID: 29463643]
Chen MH, Chang WC, Lin WC, et al. Functional Dysconnectivity of Frontal Cortex to Striatum Predicts Ketamine Infusion Response in Treatment-Resistant Depression. Int J Neuropsychopharmacol. 2020;23(12):791–798.
[PMID: 32726408]
Zhang YF, Wu J, Wang Y, et al. Ventral striatal islands of Calleja neurons bidirectionally mediate depression-like behaviors in mice. Nat Commun. 2023;14(1):6887.
[PMID: 37898623]
Liu J, Mo JW, Wang X, et al. Astrocyte dysfunction drives abnormal resting-state functional connectivity in depression. Sci Adv. 2022;8(46):eabo2098.
Ding X, Lin Y, Chen C, et al. DNMT1 Mediates Chronic Pain-Related Depression by Inhibiting GABAergic Neuronal Activation in the Central Amygdala. Biol Psychiatry. 2023;94(8):672–684.
[PMID: 37001844]
Zhou W, Jin Y, Meng Q, et al. A neural circuit for comorbid depressive symptoms in chronic pain. Nat Neurosci. 2019;22(10):1649–1658.
[PMID: 31451801]
Kim J, Kang S, Choi TY, et al. Metabotropic Glutamate Receptor 5 in Amygdala Target Neurons Regulates Susceptibility to Chronic Social Stress. Biol Psychiatry. 2022;92(2):104–115.
[PMID: 35314057]
Liu W, Ge T, Leng Y, et al. The Role of Neural Plasticity in Depression: From Hippocampus to Prefrontal Cortex. Neural Plast. 2017;2017:6871089.
[PMID: 28246558]
Ramirez S, Liu X, MacDonald CJ, et al. Activating positive memory engrams suppresses depression-like behaviour. Nature. 2015;522(7556):335–339.
[PMID: 26085274]
Bagot RC, Parise EM, Pena CJ, et al. Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression. Nat Commun. 2015;6:7062.
[PMID: 25952660]
Meng L, Zheng X, Xie K, et al. Hyperexcitation of the glutamatergic neurons in lateral hypothalamus induced by chronic pain contributes to depression-like behavior and learning and memory impairment in male mice. Neurobiol Stress. 2024;31:100654.
[PMID: 38948390]
Fan Z, Chang J, Liang Y, et al. Neural mechanism underlying depressive-like state associated with social status loss. Cell. 2023;186(3):560–576 e17.
Wang D, Li A, Dong K, et al. Lateral hypothalamus orexinergic inputs to lateral habenula modulate maladaptation after social defeat stress. Neurobiol Stress. 2021;14:100298.
[PMID: 33569507]
Larson EB, Wissman AM, Loriaux AL, et al. Optogenetic stimulation of accumbens shell or shell projections to lateral hypothalamus produce differential effects on the motivation for cocaine. J Neurosci. 2015;35(8):3537–3543.
[PMID: 25716852]
Zheng Z, Zhou H, Yang L, et al. Selective disruption of mTORC1 and mTORC2 in VTA astrocytes induces depression and anxiety-like behaviors in mice. Behav Brain Res. 2024;463:114888.
[PMID: 38307148]
Chen X, Liu X, Luan S, et al. Optogenetic activation of the lateral habenula(D1R)-ventral tegmental area circuit induces depression-like behavior in mice. Eur Arch Psychiatry Clin Neurosci. 2024;274(4):867–878.
[PMID: 38236282]
Song Y, Li J, Li H, et al. The role of ventral tegmental area orexinergic afferents in depressive-like behavior in a chronic unpredictable mild stress (CUMS) mouse model. Biochem Biophys Res Commun. 2021;579:22–28.
[PMID: 34583191]
Tong Y, Pfeiffer L, Serchov T, et al. Optogenetic stimulation of ventral tegmental area dopaminergic neurons in a female rodent model of depression: The effect of different stimulation patterns. J Neurosci Res. 2022;100(3):897–911.
[PMID: 35088434]
Spellman T, Liston C. Toward Circuit Mechanisms of Pathophysiology in Depression. Am J Psychiatry. 2020;177(5):381–390.
[PMID: 32354265]
Ko H, Yoon SP. Optogenetic neuromodulation with gamma oscillation as a new strategy for Alzheimer disease: a narrative review. J Yeungnam Med Sci. 2022;39(4):269–277.
[PMID: 35152662]